

Getting youth involved in open source

A collection of stories about educating youth the open source way
Open Voices, Issue 7
Opensource.com

Copyright

Copyright © 2014 Red Hat, Inc. All written content licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Introduction

In January 2014, Opensource.com featured a selection of articles focused on how kids and teens are using open source. We called it our Youth in Open Source week. The reaction from our readers was amazing. They commented on stories, shared with friends and colleagues, and sent us new stories about how youth they know are involved in open source. We decided to collect these stories, and other relevant articles previously published, as part of our Open Voices eBook series so that you can take them along with you on your favorite reader device.

In this collection, discover how to get youth interested in coding, information on the various Linux distributions for kids and educators, the best projects for kids and beginners to open source, and more. Hear how students, parents, programmers, start-ups, IT directors, and others educate, include, and involve our youth in learning about and using open technologies and open principles.

Four Linux distros for kids

Aseem Sharma (originally published January 2014)

I can see the brightness of curiosity in my six year old niece Shuchi's eyes when she explores a mobile phone or manipulates the idiot box with its remote control or becomes creatively destructive with any other electronic device. She, like a lot of kids her age, love experimenting.

This curiosity reaches its peak when she sits in front of my laptop or her father's laptop. A lot of times, however, I observe that she is lost in complicated applications that are suitable only to adults. An operating system that an adult uses and the system running it can look like a beast to a lot of kids. These applications are beyond the comprehension of very young kids and do not provide an ideal (and playful) introduction to computers. Further, adults' laptops and tablets do not serve as a good learning environment for any kid (younger or older) who is just onboarding into the world of computing. Besides, letting a kid run wild on a computer with an online connection can be daunting for the parents.

As a big kid myself, and an open source software enthusiast for over four years now, I like exploring and experimenting with different software solutions. Pertaining to the problem of finding and setting up an ideal system for my young niece, I found that the open source Linux community has created specialized operating systems and environments for kids. Plus, setting up these systems is a breeze.

Why should kids learn Linux

I have reached a conclusive opinion at this point in my life that children should be exposed to the power of Linux early on. Two of the reasons are...

For the future of computing

 I recently read the article, A year of Linux desktop at Westcliff High School, which is an excellent piece by Stu Jarvis in which Malcolm Moore replies to a question by stating, "Here is a survey that reports in 2000, 97% of computing devices had Windows installed, but now with tablets and phones, etc., Windows is only on 20% of computing devices, and in the world of big iron, Linux reigns supreme. We specialize in science and engineering and want our students to go on to do great things like start the next Google or collapse the universe at CERN. In those environments, they will certainly need to know Linux."

Linux runs some of the most complex infrastructures in the world. For anyone even remotely interested in a career in technology, learning Linux will be a definite asset. Besides that, the adoption of Linux is massive and ubiquitous. Consider this:

	
Linux powers international space stations

	
Linux powers the technology in new cars like Tesla and Cadillac

	
Linux powers air traffic control systems

	
Google, Facebook, Twitter, all use Linux

	
9 out of 10 supercomputers in the world run on Linux

There is a rational reason that initiatives like One Laptop per Child, which in my opinion is one of the most powerful programs today that is working to bridge the digital divide, use Linux based systems.

For customization and variety

 Learning at an early age can be best enhanced in an environment that encourages exploration. There is no other operating system that offers such variety and autonomy to customize the system based on specific needs like Linux. Like toys and clothes for kids, the Linux community has developed specific operating systems that can offer them a fun learning environment. I believe that to boost curiosity in kids, it is important to create a set up that gives them a feeling of wonder.

Programs to teach kids Linux

There are many different varieties of environments that the Linux community has designed for the children, and I haven't yet explored them all, but of the ones I did, you should be able to find a great solution for teaching a kid you know about Linux and computing.

Qimo

http://www.qimo4kids.com/

Qimo for kids is a Ubuntu-based distribution designed specifically for children. The operating system comes pre-installed with a lot of educational applications for children ages 3 years and older. It comes with GCompris, a perfect suite for children aged 3 to 10 years. It consists of over 100 educational games that teaches basic computer use, reading, art history, telling time, and drawing pictures, as well as Childs Play, a collection of memory-building games.

One of the things I like best about this distribution is that it uses XFCE desktop , which is a lightweight desktop that can be installed on older machines. The hardware requirements are low and it is absurdly easy to repurpose an old laptop or a desktop system. We had an old PC at home, and Qimo resurrected it. This operating system was my choice for my niece because of its simple child friendly cartoon desktop and assortment of educational applications.

Sugar

https://www.sugarlabs.org/

Sugar was designed for the One Laptop per Child program. It is an easy to use and kid-friendly operating system. Children who love exploring will figure out things quickly in this environment, even if they cannot read or write yet.

From Sugar Labs:

Information is about nouns; learning is about verbs. The Sugar interface, in its departure from the desktop metaphor for computing, is the first serious attempt to create a user interface that is based on both cognitive and social constructivism: learners should engage in authentic exploration and collaboration. It is based on three very simple principles about what makes us human.

Ubermix

http://www.ubermix.org/

Ubermix is extensively used in schools. The system was designed to store user data and software in separate partitions. So, in case the computer malfunctions, the user can wipe out the operating system and restore fresh copies quickly. From Ubermix founder, Jim Klein, in an Opensource.com interview:

Ubermix comes pre-loaded with a number of applications for education, productivity, design, programming, Internet, and multimedia construction. Education oriented applications like Celestia, Stellarium, Scratch, VirtualLab Microscope, Geogebra, iGNUit, and Klavaro, as well as educational games like TuxMath, TuxTyping, gMult, and Numpty Physics all bring with them plenty of opportunities to learn.

Internet applications we all know and love, like Firefox, Thunderbird, Chrome, Google Earth, and Skype are all there. Common productivity apps like LibreOffice, NitroTasks, Planner Project Management, VYM (View Your Mind), and Zim Desktop Wiki are too. Kids interested in design will find the GIMP, Inkscape, Scribus, Dia, Agave, and even TuxPaint for the younger ones. And apps like Audacity, Openshot, Pencil, and ffDiaporama help round out the media offerings. These, and many more, make Ubermix a powerful launchpad for student creativity and learning.

Edubuntu

http://www.edubuntu.org/

Formally the Ubuntu Education Edition, Edubuntu was developed in collaboration with educators and teachers. It embeds a variety of educational programs and a suitable learning environment. An advantage to it is access to the Ubuntu software repository. The education community has extensively used this operating system in schools and organizations to provide an enriched learning environment for their students. It's a great operating system to teach older children about Linux; it can have a steeper learning curve in comparison to Qimo and Sugar.

On Europe's first Code Week with Irish Ambassador Julie Cullen

Robin Muilwijk (originally published January 2014)

The first Europe Code Week was held two months ago at schools and CoderDojos in 26 countries around Europe—Ireland and Croatia being the most active. The event was launched to help increase the knowledge shared with school-age children about coding, computer science, and technology by The Young Advisors (a group of young people dedicated to advancing a digital society working closely with the Vice President of the European Commission, Neelie Kroes).

During the events, kids from schools all over Europe used Scratch, Arduino boards, and other open source software and hardware to build their projects (including robots)!

Each country that took part in Europe Code Week appointed an Ambassador to lead their event. I reached out to Ireland’s Julie Cullen, a teacher at St. Oliver’s College, Drogheda, Co. Louth, to get her take on the event. In this interview, Julie shares just how excited the kids were to work with code and computers, what open source software they hacked on, and what projects got underway. She also tells us what’s in store for this year’s #codeEU 2014.

You are a teacher, youth advisor to Neelie Kroes (VP of the European Commission), and ambassador for Europe Code Week. Could you tell us a bit about yourself?

I have been a teacher for six years and completed a Masters in Education (via e-learning) last year. My degree ignited an interest in the use of technology in education. I began to interact with other teachers who felt the same way—mostly through The Computers in Education Society of Ireland (CESI). I started to realise the importance of coding as a new literacy through Twitter conversations (#edchatie), CESI meetings, and collaborations with my colleagues at St. Oliver's Community College. As an English teacher, I spend my day trying to encourage students to be more creative and improve their critical thinking skills. Even though I don't teach coding, the skills that coders need are very similar to those that we use in my English class.

The site for Europe Code Week says the event is about a group of young people who believe in a world where ideas are given a chance to change the world. Tell us more about that.

We wanted to encourage more people to become creators, not just consumers of technology. We also wanted to connect various initiatives, who are already helping Europeans learn more about coding and technology in general. Not necessarily just young people. We should all learn more about technologies we use every day. That's why we envisioned a week to celebrate ongoing efforts like CoderDojos, Rails Girls, and more—and to encourage new initiatives to be born by sharing best practices.

The main purpose of Europe Code Week is to give more visibility to great projects and initiatives that are already happening across Europe and are teaching children and adults about technology, often without recognition and funding. By doing that, we hoped to inspire new projects to be born and more citizens to learn about the tools they use every day to get things done.

Plus, the Europe Code Week website was built with Jekyll, an open source static page generator written in Ruby and hosted on GitHub Pages. This allows anyone in the world to send us pull requests and to add new content.

How did the Ambassadors for each country spread the word and get schools and kids to sign up? Was the response greater than you expected?

Alja, a Young Advisor from Slovenia, contacted us with her idea, then it was up to the Ambassadors from each country to decide how they would get the word out. (See a great video with her.) I used my favourite method of communication: Twitter! I tweeted about Code Week and asked if anyone would be interested in getting involved. My tweet caught the attention of Bernard Kirk from Galway Education Centre in Ireland. He quickly began establishing Galway as the "Embassy" for Europe Code Week in Ireland. Minister Ciaran Cannon (Minister of State in Department of Education) quickly became involved.

It's worth noting that we left the format completely open. It was up to organizers to decide what kind of event they wanted to do and for whom. Some groups conducted lectures, others hosted intensive workshops, all for various age groups. The great majority of events signed up on their own accord; they all felt this was the right time to do something special and Code Week provided a great excuse to start something new.

VP Neelie Kroes and her DG Connect team at the European Commission really helped us by spreading the word about #codeEU on their blog and social media channels. The response was certainly above our expectations! The first Code Week began as just a small experiment and grew faster than we could have hoped for.

As hackathons grow more popular worldwide, how can we help replicate them in more places where kids, adults, and organizations benefit from the good work coming out of these events?

The feedback and response was great from all groups—beyond our expectations! We were especially happy to see many schools teaching children how to code during various classes. Educators and parents went beyond that, then, to think about how we can do more to keep existing efforts going.

In Croatia, 65 schools got involved and in Ireland, over 100 schools participated in in #codeEU.

Each organizer of an event chose the tools and methods to use to get projects started, and many were open source. Among the younger participants, Scratch was especially popular. Older children also experimented with Arduino. In Slovenia, the local Mozilla Space hosted the first (and certainly not the last) Mozilla WebMaker workshop. I think creating games was most popular with kids and teens, while adults tended to focus on web development.

Are there plans for a Europe Code Week 2014?

Given the amazing response we received this year—300 events all over Europe!—with just one month of planning and one month for promotion, it's clear that Europe needs #codeEU 2014. We're still discussing various options for scaling internally and do welcome any suggestions: please send an email to europecodes@gmail.com.

Trust your students with open source

Charlie Reisinger (originally published January 2014)

In Zen Buddhism the concept of Shoshin, or "Beginner’s Mind," teaches us to approach learning with openness and a lack of preconceptions. Zen Monk and teacher, Shunryu Suzuki famously wrote: "In the beginner’s mind there are many possibilities, but in the expert’s there are few." When we cast aside that which we think we know, or that which we believe to be true, we can embrace new insights and ideas. As we climb to levels of expertise in our careers and work, we sometimes disconnect from the intense experiences of unknowing and the creative discovery inherent in being a novice.

Children wholly embody a beginner’s mind and naturally exhibit an inquisitiveness and passion to explore the world around them. They are natural hackers, as evidenced by elementary students describing in glee how they manipulate and mod Minecraft, trick out games via cheat codes, and jailbreak iPods. Unimpeded by assumptions of what technology should do, or a fear of failure, children push forward into a realm of possibility, invention and exploration. As a technology and education leader in a public K-12 school district, my role is to design a learning environment where openness, creativity, and opportunity is offered to every child. I'm also fortunate to be part of a team who values the open source philosophy and embraces educational software freedom.

For over a decade, open source has permeated all areas of our district operations, infrastructure, and classrooms. We have introduced open source software and ideals to our students, parents, teachers, and community through a variety of projects and programs. Our school district has deployed the largest fleet of student Linux laptops in the state of Pennsylvania. As of January 2014, Penn Manor students regularly utilize nearly 3500 laptops and desktops exclusively running open source software. Open source is with them everyday, and an integral part of their learning.

The introduction of open source is natural; children have no preconceptions of what software should be used in school because a marketing team, teacher, or other expert tells them what to use. They simply take advantage of the available tools to solve problems, write meaningfully, and produce visible artifacts of learning. I believe that a student's curiosity and ability to explore should not be confined to a classroom or bound by a locked technology platform. As part of our high school 1:1 laptop program, all 1700 students in grades 9 through 12 are receiving Linux powered laptops loaded with a large menu of open source applications. The laptops are personally assigned to each student, used as part of their studies during the school day, and travel home with them during evenings and weekends.

Many school 1:1 programs restrict what students may do and learn with their devices. Installation or modification of software is typically restricted, often draconically, to IT personnel. This common practice cripples learning and dishonors students’ autonomy. In contrast, our program begins with a deep level of trust; student accounts are given sudo privileges and granted the liberty to install programs, spin configuration knobs, and freely experiment with the universe of open source software. Novice and accomplished students are welcomed and encouraged to learn the art of computing and pursue personal passions and interests. By starting the conversation with "We trust you," and providing an open platform for learning, we set in motion a train of student inquiry and discovery.

Everyday access to open source on the desktop helps our students experience the potency and flexibility of open source, and possibly help launch the careers of future coders, engineers, and free thinkers. Finally, education and outreach to fellow teachers, parents, and families is critical to helping novices understand the value of open source software and communities. My parent presentations and teacher professional development sessions typically begin with introductions to familiar software such as Firefox and Moodle. As I explain the merits of LibreOffice and Linux, parents commonly are intrigued by alternatives to expensive proprietary software such as Microsoft Office and Windows. Taxpayers typically react with glee when they learn that our use of Koha, Moodle, OwnCloud, WordPress, and other enterprise-class solutions provide high-quality free alternatives to costly proprietary systems and services.

Students embrace open source principles with incredible curiosity and fearlessness. Yet, I'm not exactly sure why open source software has not become wildly popular in schools. Relentless marketing by commercial vendors is certainly part of the equation. Perhaps at some point, many walk across the line of demarcation between beginner mind and expert mind. The march from open to closed plays out time and time again in educational software preference, licensing, and technology. Often, the inertia and comfort of one's expertise is difficult to overcome and can limit the desire to step forward into new territory.

As adults, as experts, how might we energize and kindle the spirit of open learning and creation? As suggested by another great teacher, we begin the thousand-mile journey with the first small step, place open options in front of our students, and watch the magic unfold.

What open source means to a young programmer

Dylan Katz (originally published January 2014)

I’m a 15 year old programmer. I started at nine and by now have written a lot of code. To me, programming is creating, and I've created many projects—from a pure Java 3D projection engine to a web spider. Today, I'm sharing my story with you for Opensource.com's Youth in Open Source Week.

In the sometimes dark and mysterious world of computers, I see open source programming and community around it as a force of good. Open source sparks and kindles a connection between people that I think is hard to find elsewhere in programming. Working with open source, a programmer builds important and powerful collaboration skills. This is significant because many of us (programmers and self-proclaimed nerds) are rather antisocial. Open source programming helps us cultivate social behaviors like sharing, improved communication, and collaborating towards a common goal.

It was just a few years ago that I first heard the term "open source"—from my dad. I was new to programming then and though I understood the concept behind open source, I didn't understand why. Why would someone take their hard work, their masterpiece, and allow someone else to “scribble” on it? To me, it seemed equivalent to an artist inviting people to draw on their painting.

A year later, a friend of mine and I decided to create a platformer game. It was pretty basic, but we had a storyline. I did all of the code, and as I was creating this game, I realised that, like I said before, programming is creating, but more importantly: I have the ability to create something with soul in it. I had passed a certain kind of barrier and things that were difficult in coding had become easier. Now, I felt, I could create be more artistic with my code. I could start to use code as a form of self-expression.

As I coded, the why? of open source began to seem a little less ridiculous. I began to understand the appeal of distributing work that could help others. I found that programming is an art—but less like a painting and more like a novel. The majority of great novels have had a great editor. Even simple texts have an editor behind them, helping to shape and add and improve the content.

As a rather introverted person, being an open source programmer gives me access to a community that it feels really good to be a part of. My first polished and complete open source program is a simple vulnerability scanner. And though I have very few downloads and I’ve been the only one who’s contributed to the project on GitHub, doesn't mean I won't ever have a successful open source project. For now, my projects are small, but I hope that some time in the future my projects will help people across the globe.

For many of us, programming is about creating. In a sense, it's like dreaming. Coding is a way to make your dreams come to life. And, the world of open source programming, to me, is one of dreams, always changing, always moving, sometimes bizarre, with infinite opportunities.

How computer science teachers can better reach their students

Lauren Egts (originally published January 2014)

Imagine being a high school freshman walking down the halls of your new school on the very first day. You somehow make it to first period without becoming epically lost in the unfamiliar halls. Finally, the bell rings, signaling that you've officially made it through your first high school class. Taking a look at your schedule, you see your next class is Exploring Computer Science. You think: "Wow, computers! This should be fun!"

For me, this idea and feeling of fun didn't end of that first day. It continued throughout the year as a student of Mr. Allen's Exploring Computer Science class.

I first met Mr. James Allen at an Akron Linux User Group meetup this past summer. He had learned that a future student of his (me) was presenting on Scratch and the Raspberry Pi and took the time to see my presentation (about an hour drive!). That's a dedicated teacher. That's Mr. Allen.

In this interview with him, I asked some questions about how he teaches computer science to his students at the all-girl school Hathaway Brown. He's telling kids to get to work! And, his teaching motto is that the best way to learn computer science is to do stuff with it. He encourages educators to give kids creative projects to pique their interest in computer science by using open source programming languages like Scratch. He says giving kids the tools they need to make things is the best way to teach computer science, especially to girls.

How did you get into computers?

My dad brought home a 'portable computer' from work when I was five or six years old. First of all, understand that portable back then means something quite different than it does now: this was a 30 lb suitcase computer. I was fascinated by it, though I never got much of a chance to play with it. When I was seven, we were fortunate enough to buy our first family desktop computer, a Packard Bell 286 with a VGA card. It was awesome!

How did you get into teaching computer science? Did you start with computer science and then got into teaching, or did you start teaching and then get into computer science?

I majored in computer science engineering. After college, I worked for a software development company, but I just wasn't passionate about our work. I taught a community education course for middle schoolers interested in making video games, and that's when I realized that teaching was something that I could be passionate about. Computer science is something that I think is hugely important to understanding and shaping our society, so it gives me great satisfaction to be involved in teaching it!

Computer science can be a dry subject if taught the wrong way. What do you do to make it interesting and keep students engaged?

The most important thing is to frequently give students opportunities to create things. Many computer programming courses focus on solving problems that only involve math or strings. While those types of projects are valuable in terms of practicing algorithm development and gaining a deeper understanding of the inner workings of a computer, they aren't great introductory material. I use tools such as Scratch and Python to give students a lot of freedom while exploring exciting new concepts.

In computer science class, we do a lot with Scratch. How do some of the basic concepts of Scratch help prepare us for more complex languages like Java for FRC?

Computer programming is ultimately about identifying the steps to solve a problem. Scratch has control structures such as loops and conditional statements (if/then/else), variables, and even the concept of objects with their own methods. In the computer science classes I teach, we first see how Python implements these concepts, and then transition to Java. This further emphasizes that it's not about the specific words used in a language as much as the larger concepts, which apply to many languages/implementations.

Is Scratch just about programming or do the social aspects help students learn about open source and team development?

Scratch can be about both. I haven't used the collaborative features of Scratch that much, but the fact that they are there means that students can explore them on their own. I love the remix functionality built in—the fact that anyone can view the code behind a published project is great from an educational standpoint.

Should educators teach concepts differently to inspire girls as opposed to inspiring boys or co-ed classrooms?

Yes. The way educators have been teaching computer science has resulted in the field being dominated by men. I think courses crafted specifically for girls have the potential to increase female participation later in life.

What do you see as the future for computer science education? What are the challenges? What can be done now to address these future challenges?

I think computer science will become a required course in middle and high schools. The concepts associated with it are applicable throughout life: breaking a problem down, identifying the optimal way to solve it. It will be challenging to figure out how that fits in with established curricula. It will also be difficult to convince parents and administrators that all students are capable of at least a surface level understanding of computer science concepts. Increasing student and parent exposure, through large scale events such as Hour of Code, will certainly go a long way toward easing these challenges.

What advice do you have to parents and educators to inspire youth to be more involved in open source and STEM?

Make sure they have the tools necessary to explore computer science. Give them the opportunity to build and create things with computers. And try coding yourself—it's never too late to start learning!

James Allen is the Upper School Technology Department Chair and Director of the Center for Technology & Invention at Hathaway Brown School. He has been committed to increasing female participation in IT ever since his college days when he was a founding member of Girls in Electrical Engineering and Computer Science (GEECS) at the University of Michigan. When he isn't teaching, he enjoys playing bass and acoustic guitar, reading post-apocalyptic fiction, and collecting classic arcade games.

Four projects for parents to teach their kids about open hardware and electronics

Dave Neary (originally published January 2014)

Kids are quick learners and have great imaginations. When pursuing an electronic or hardware project with a kid, the most important thing to keep in mind is: keep things playful. As long as their hands are in gunk and they are taking things apart, or there's the possibility of blowing something up, kids will stay interested. As soon as the activity starts to seem like work, they switch off.

Here are four fun and easy projects for teaching kids more about electronics and hardware in a couple hours or an afternoon. Then, they may be on to the Arduino board or Raspberry Pi before you know it! Note: For kids between 4 - 8 years old, more adult supervision may be required.

First, I'll share with you three excellent businesses where you can purchase open hardware tools, kits, and electronics for these projects and more.

Open hardware retailers

	
littleBits has an open source library of electronic modules that snap together with tiny magnets.

	
SparkFun Eletronics has the bits and pieces to make your electronics projects possible; they also offer classes and online tutorials.

	
Adafruit Industries has tools, equipment, and electronics for makers of all ages and skill levels.

Four fun and easy projects for kids

1. Broken toy day

Activity: Take old toys apart, poke at them, and scavenge electronic components. Try to figure out what is broken and see if you can fix it.

What you need: A screwdriver, some batteries, a few wires to test and play with components, and a soldering iron (initial adult supervision advised) to repair parts.

Read: Unleash your children's desire to take things apart

2. Learn to solder

Activity: Almost every electronics project requires you to know how to solder. Solder wires and pieces of coat hangers together to make wire sculptures, or solder basic electronic circuits.

What you need: A soldering iron, wires, coat hangers, other metal parts lying around

Watch: How to solder video

3. Make conductive and non-conductive putty

Activity: Make batches of conductive and non-conductive putty for teaching kids learn the basics of eletrical concepts, like the difference between "in series" and "in sequence" for circuits. Putty is great for smaller fingers too!

What you need: A few LEDs, maybe a Piezzo buzzer, some switches, a battery pack, and some pieces of wire.

Recipe: for conductive silly putty

4. Write a video game

Activity: Write a simple video game where you have to guide a hand-drawn character through a hand-drawn maze. For older kids, add a monster that roves through the maze or other obstacles to avoid.

What you need: Scratch: a kid-focused program for coding. Though this activity may not deal directly with electronics or hardware, this drag and drop programming technique will teach kids how circuit boards and systems rely on code at that next stage of functionality.

Find more: Scratch starter projects

Coding adventures and contributing to open source with CodeCombat

George Saines (originally published January 2014)

When I founded my first startup in 2008, I was a programming newbie. A degree in economics from Oberlin College hadn’t prepared me for a career writing production-ready code. Despite my best efforts at slapping together crude HTML and CSS Django templates, my ability to contribute to our codebase was limited at best. So I started slowly teaching myself to code with online tutorials and lessons. After many disheartening starts and stops, I realized why I was having problems sticking with it: code lessons and videos felt like school to me, and I had no interest in returning to the classroom.

What we built next was CodeCombat, a game that teaches kids and students to code. Players use spells (JavaScript) to control their forces in a battle against Ogre enemies. And, on January 8 this year, we open sourced the entire project: servers, art, and all. You can literally clone our repo and have a working version of the game on your local machine in minutes.

CodeCombat is a for-profit, YCombinator-backed startup that sees the future of code education as beginning with instruction and ending with contributions to open source projects. When we designed the product, we knew we wanted to open source all of the code. We envision players learning to code using tutorials on the site and once they have reached a certain level of proficiency, diving into the codebase to work with real live production code with a world class developer network to help them learn and work on a project that’s meaningful for them.

Since we made the open source announcement, our repo has attracted more than 2000 stars, 400 forks, 200 watchers, and 25 contributors. CodeCombat remains in the top ten trending repos on GitHub.

From the announcement:

Closed source may be the choice made by virtually every startup and every game studio, but we believe this is a convention that needs rethinking. CodeCombat is already a community project, with hundreds of players volunteering to create levels, write documentation, help beginners, playtest, and even translate the game into seventeen languages so far. Now the programmers can join the party, too.

Our mission is to teach you to code. Until we have over nine thousand levels taking you all the way from beginner to Bellard, why not jump into a novice-friendly open source project to keep learning? We aren’t just dumping the code out there and calling it a day—we’ve worked hard to make it simple to contribute. You don’t need to know git, you don’t need to have anything installed, and you don’t even need to know how to code to help with some of the issues on our GitHub.

Our goal at the moment is to foster developer interest and continue building an engaged community of contributors around the project. Games provide a rich and interactive way for students and young coders to get involved with computer science, and we hope that CodeCombat eventually becomes an integral reason why millions of students got started on their coding adventures.

Read more about how we taught code to 180,000 kid programmers in the recent Code.org Hour of Code event.

The Digital Girl of the Year dreams of dancing with robots

Robin Muilwijk (originally published January 2014)

Lune van Ewijk is ten years old and already a role model for kids and adults alike. Last year, she won the Digital Girl of the Year 2013 award from the European Commision, who had this to say about her:

Lune develops her own games and interactive movies, designs robots, and dreams of becoming an engineer. At ten years of age, she is already a true digital visionary and already has a track-record of getting girls her age excited about digital endeavour.

Her message to the world: be you and don't give up.

Lune is part of CoderDojo Belgium, where she has learned and practiced a variety of open source digital skills like programming in Scratch. In this interview find out more about CoderDojos, the work she's done, the award she's won, and what she sees in her future.

Tell us a little bit about yourself.

I’m Lune. I’m 10 years old. I love skating and I play drums in my own band with school friends (we write and sing our own songs). I want to create a ramp for my miniature skateboards with my little brother so we can make them move faster. I like break-dancing and drawing. And, over the holidays, I started writing a book. I’m inspired by Diary of a wimpy kid, and I want to create my own Diary of Lune. In this diary, I write stories about my family, like stuff my little brothers and sisters do, and I try to find solutions for daily life.

I'll give you an example: If my mum asks me to clean up my room, I dream about a robot that does it instead of me :-). Sometimes, I make conceptual drawings about how that robot should look and how it works. Or, when I’m bored during a traffic jam, I brainstorm with my stepfather about possible solutions. He’s a pilot, so we came up with flying cars.

I love to give performances for my family: dancing, singing, and with my robots. It’s funny to dance with them. Once a month, I attend a workshop at CoderDojo Belgium at the Belgian Science Center Technopolis.

My parents are great role models for me. My mum is a member of Brussels Girl Geek Dinners, and sometimes I go with her to meet other girls with a passion for electronic gadgets. She works as a digital communication consultant, advising clients about websites, social media, and blogging. And, she is a volunteer for CoderDojo Belgium and a member of The Scientific Committee of Technopolis. My stepfather studied biology and is a pilot. He's passionate about Information Communications Technology (ICT) and created my website on Wordpress. My father is an artist and my stepmom is a director for TV-reportages for Woestijnvis (National Belgian TV).

My grandpa got his certificate for OneHourOfCode. Hoera! (Hurray!)

What got you into programming, robotics, and attending CoderDojos?

My mum signed me up for CoderDojo Belgium, and I loved it. The first workshop I attended was a special dojo for girls only. During the meetups, I learned to create my own movies and computer games. I learned how to teach a robot how to write my name and the name of my friends and family. It felt so great when it worked!

My best friend also goes also to CoderDojo meetups as well as my nephews.

My uncle is an engineer who has his own 3D printer at home. He creates small planes with remote control. When I saw that, I wanted to create something by myself. I like to work with different materials and invent tools that make life easier.

At the CoderDojo meetups, the coaches are great and cool. Jasper, the lead coach in Mechelen, helps me with robotics. And Martine Tempels is a role model for me. She works in ICT and Telecom; she founded Coderdojo Belgium. On science day, Chiara Faes, ICT-student at Thomas More University Belgium and skatergirl, explained soldering to me and helped me create my own micro-controller.

We use Scratch and RoboMind to create movies and games. Scratch helps to learn about coding, but it’s not the same as a real programming language. Scratch works with coding blocks and for programming an Arduino in C++. Sometimes, we make funky stuff with MakeyMakey or do web design with coffeecup. When I work with the older kids, I use the Arduino board (which, I think is difficult!). Our group has also participated in Hour Of Code.

Tell us about receiving the first-ever ‘Digital Girl of the Year’ award.

I was invited to fly to Vilnius with my mum after I shared some of my projects with Ada Awards and Zen Digital Europe. I showed them my Scratch projects, my pictures of robots that I wanted to create, and made a video to promote myself. I also told the organization about my press conference with Neelie Kroes and Androulla Vassiliou in September about digital education.

In Vilnius, I met Neelie at an early breakfast meeting, together with the other candidates. We discussed digital education in the world and in Europe. My mum and I spent most of our time at the conference and discovered so many cool robots and 3D printing projects. I got to know the other finalists, and they were pretty cool. I’m not good at English (yet) but with tablets and Google Translate, we found a way to communicate.

What do you want to do in the future?

When I grow up, I want to give dance and music performances with robots. I will program them myself and write my own music, but the musicians will be real people.

I also want to create robots that help me with domestic work like cleaning up my room and setting the table for breakfast.

Maybe I’ll learn more about MakeyMakey and Arduino. Or create my own computer, I don’t know yet. We'll see.

Educational Linux distro provides tech-bundle for kids and educators

Jason Hibbets (originally published March 2013)

How are we going to teach the next generation about open source and Linux? More importantly, how can we get the right technology into classrooms to empower our educators to teach our children the open source way?

The opportunities that open source presents to education and academics is growing each day. Opensource.com highlights individual tools like Scratch and TuxPaint that are starting to make an impact—but, what about an entire education distribution? How do we make it easier to get an entire toolset into the hands of school systems, teachers, and students? How can we really move the needle and present a revolutionary open source operating system designed for kids and education?

Enter Ubermix.

Ubermix is a Linux distribution built by educators, for educators, and for students, "with an eye towards student and teacher empowerment." That's why the "desktop" looks like a mobile phone. And it comes pre-installed with tons of open source applications that are geared toward education and creativity.

We caught up with the founder of Ubermix, Jim Klein, to find out more about this Linux-based operating system and how the project aims to create a turn-key installation process, reducing the complexity and deployment often associated with installing a Linux distro. We also wanted to hear some of the stories from the people already finding success with Ubermix.

Takeaway sneak peek: You can make a difference for the next generation. Just tell someone you know in education about Ubermix.

Tell our readers about Ubermix and your target audience.

Ubermix is designed to bring the power and flexibility of free software and an open operating system to kids and the education community. While there are a number of general purpose Linux builds out there, few have made significant inroads into schools, due in large part to their complexity and general purpose design language. What Ubermix brings is an easy entry point and sensible design decisions, having been assembled with a real understanding of the challenges education technologists face when attempting to implement something new. Features such as a five minute install from a USB key, extraordinary hardware compatibility, and a quick, 20-second reset process make it possible for understaffed and underfunded school technology teams to scale up significant technology access without increasing the need for technical support.

For kids, Ubermix brings a far more approachable interface to Linux, virtually eliminating the traditional "desktop" paradigms in favor of something similar to a cell phone that's far easier to use. Couple that with more than 50 carefully selected applications across a broad array of subject areas and that quick reset function, which enables a student to solve their own problems without losing any of their work, and you have a powerful tool for learning.

What are some of the open source applications included with Ubermix?

Ubermix comes pre-loaded with a number of applications for education, productivity, design, programming, Internet, and multimedia construction. Education oriented applications like Celestia, Stellarium, Scratch, VirtualLab Microscope, Geogebra, iGNUit, and Klavaro, as well as educational games like TuxMath, TuxTyping, gMult, and Numpty Physics all bring with them plenty of opportunities to learn.

Internet applications we all know and love, like Firefox, Thunderbird, Chrome, Google Earth, and Skype are all there. Common productivity apps like LibreOffice, NitroTasks, Planner Project Management, VYM (View Your Mind), and Zim Desktop Wiki are too. Kids interested in design will find the GIMP, Inkscape, Scribus, Dia, Agave, and even TuxPaint for the younger ones. And apps like Audacity, Openshot, Pencil, and ffDiaporama help round out the media offerings. These, and many more, make Ubermix a powerful launchpad for student creativity and learning.

What does the future hold for Ubermix?

I'm constantly amazed and humbled by the growth of Ubermix, and continue to work towards making it better, easier, and more powerful for kids, teachers, and technologists. I think touch will certainly play a role in the future, as will alternative devices and form factors. It will be interesting to see just how the recent hardware renaissance plays out, and where Ubermix fits into the future needs of schools. I also plan to work with the community to build some sort of a web-based management interface that would make larger deployments even easier to manage.

What is the most interesting way Ubermix has been used so far?

People always find ways to do amazing things with Ubermix. A team of middle-school students have built a number of computer labs in the central valley using government surplus machines. Kramden Institute is planning to deploy Ubermix on 3000 computers given to needy kids to help bridge the digital divide.

A retired education technology leader is not only building and donating Ubermix machines to needy families, but is also touring the country, sharing Ubermix at conferences in several states. And I once heard from an activist who shared with me that he was giving Ubermix netbooks to kids in Central America. It's truly amazing and inspiring.

Where does someone get started with Ubermix and how can someone get involved?

You can find all things Ubermix at ubermix.org. As with any open source project, the bigger the community the better! New ideas and code are always welcome, as are translators, writers for the wiki, and anyone willing to help out answering questions in the forums. And, of course, help spreading the word!

Bonus: What's the best "feel good" story from the Ubermix community?

The best thing about Ubermix is seeing an empowered student do something amazing with it and then share how they did it, both within their classroom and school, and the online world. From that geeky kid who struggled with relationships until his peers found out what he could do with a computer... to the special day class kids who get to shine as they teach the regular ed kids how to build something... to the teams of fourth graders writing apps and deconstructing code... to the creative, outgoing kid who makes and makes and makes things that he shares online. It's always incredible to behold.

It's the power of community driven by open source, writ large for the world to see.

How open source took root in one Pennsylvania school district

Charlie Reisinger (originally published August 2013)

I’ve been working in educational technology for more than 17 years and have spent much of my career advocating for open source in schools. For years, open source in education has gotten a bad rap. Superintendents, school boards and teachers frequently misunderstood open source software to be synonymous with dubious code birthed by mad, degenerate "hackers" who spend dark nights scheming to unleash complex and nefarious plots for social disruption.

Since public education communities have historically been biased toward the traditional, you might guess that, at the very least, open source was long considered a little outlandish. On multiple occasions, I’ve fielded questions such as: Who comes up with this open source stuff? Isn’t it illegal? Why do they just give it away for free?

Part of my journey to challenge this mindset began at the turn of the millennium. As the Y2K bug scare subsided and schools awoke to the promise and power of student technology, I struggled with one of the oldest and most taxing questions a public school administrator faces: How are we going to afford our school technology? Budgets for software and computers were slim, technology staff resources were thin and district leadership felt increasing urgency to provide robust software for our diverse community of students, teachers and support staff.

Fueled by a desire to avoid vendor lock-in

One of my first post-Y2K software projects was an overhaul of our teachers’ old-school paper grading system. The goal was to deploy a flexible, fully web-based classroom gradebook and parent grade report portal for the lowest cost possible.

After evaluating proprietary solutions from a number of big vendors, I was left with a nagging concern: No matter which company was selected, our district would not have direct access to the underlying program code or the ability to customize the program to our teachers’ needs. In essence, we would be spending precious district dollars on a system that would leave us locked out of the development process and forbidden from actively participating in feature design or development. Teachers could make gradebook feature requests, but the vendors neither guaranteed these features would make it into the program nor committed to reasonable development timelines.

There had to be a better way.

No nefarious plots, just an open source philosophy

I took a risk. Dismissing the big proprietary vendors, I chose to work with a talented, young software developer named James. Far from a nefarious "hacker" with a shady back-story, James was a superbly talented and professional programmer. He wrote quality code and deftly translated teacher feature requests into efficient grading tools and time-saving reports. In a few short months, James worked with us to design, develop and deploy a locally hosted web gradebook customized by teacher input, principal requirements and parent requests. The result was extraordinary — we received the gradebook teachers needed, had access to the code, and saved a bundle of money.

Our developer also wielded a secret weapon: The LAMP application stack. Fueled by a flexible open source engine, the final product demonstrated how open source software could power a complex school software project to a successful implementation while cutting costs significantly. No nefarious plots were stirring — just an open source philosophy to aid our schools in efficiency, fiscal responsibility and control of student data.

More than just fiscal savings — a collaborative spirit

It has been more than 12 years since our school district’s first web gradebook project. Today, open source solutions are trusted in all corners of our schools. Every student, staff member and teacher in our district is routinely empowered by remarkable software such as Koha, LAMP, LibreOffice, Moodle, Scratch, SipXecs and WordPress. In addition, my team is currently spearheading a large-scale high school student 1:1 laptop-learning program running open source software exclusively. I continue to be amazed by what can be accomplished via open source software in education.

Fortunately, our district is becoming somewhat less unique in our vision. While there is still work to be done to challenge traditional software preconceptions, I have observed that most of the education community’s open source biases are fading as teachers and school leaders progressively consider alternatives to costly proprietary products.

Of course, while the fiscal savings provided by the free side of the open software movement cannot be ignored by educators, open source in education represents more than zero cost; the principles of open source promote technological freedom of choice and encourage a participatory, collaborative spirit. These values are vital to education and student learning. I am so proud that we can model these values for our students and lead by example.

For more information on Penn Manor School District technology initiatives visit: http://www.pennmanor.net/techblog/

Where to start: Upgrading your school system to open source

Gregg Ferrie (originally published January 2014)

One short article cannot hope to encapsulate the minutea for implementing open source in school districts and schools, however this primer sets the basis for the opportunities and strategies to achieve success.

When I speak about using open source I am not limiting it to replacing commercial office productivity suites with LibreOffice, as one example. This article speaks to the pervasive utilization of operating systems, productivity software, management software to all areas of the curriculum and business of a school district. It considers the relative ease for implementing open source in elementary schools as well as highly complex secondary schools under a diversity of programs and curricular requirements.

I recently wrote about the implementation of open source systems at the Saanich School District in southern Vancouver Island, BC here: Prepare students for a rapidly changing world by teaching with open source.

As a result I have received communication about the practicality for implementing this kind of technology and what was involved. At our school district, I would consider our implementation of open source to be a success. Is it a panacea? Would it satisfy everyones needs and perceived needs? Perhaps not but when offset against declining enrollment, budget constraints, staffing constraints, limited resources, energy conservation, and other factors, I believe it offers the greatest potential benefits while satisfying curricular and business needs.

The benefits of change

When we talk about sweeping change with this system, it considers the following. Replacing not only server operating systems with Linux but desktop operating systems through the use of distributions like Red Hat, Ubuntu, and so forth. It also involves replacing the traditional fat clients, such as a Microsoft Windows computers or Macintosh computers, with Linux diskless clients that are energy efficient, cost effective, and sustainable.

It requires utilizing open source software applications wherever possible and enabling commercial applications only where necessary. It means moving to cloud-based systems as they evolve and satisfy Freedom of Information and Privacy laws. The advantages in doing these things are significant and include:

	
reduced Total Cost of Ownership (TCO)

	
reduced maintenance

	
reduced support

	
reduced operating costs

	
reduced capital costs

	
reduced licensing fees

	
reduced energy

	
reduced greenhouse gases (GHG) and CO2 emissions

	
standardization and consistency

	
increased manageability

	
increased ability to upgrade and react to trouble tickets

	
extended life of clients

	
...and a number of other benefits and advantages

The challenges of change

With all of the improvements to open source software, the question today is not a technological one but a human and social one. For any school district planning to implement significant technological change, such as the use of Linux diskless clients and open source software, there are several important impediments and can include any and potentially all of the following:

	
lack of executive support

	
insufficient funding

	
poor communication

	
inadequate planning

	
lack of technical expertise

	
user resistance to change

	
IT staff resistance to change

	
insufficient training

	
inadequate ongoing support

	
failure to garner user feedback and advice

A comprehensive model for enabling change

In the case of the Saanich school district, the model had already been developed at my previous sister district. At Saanich we used this previous developed model as a foundation for establish and refine our own strategy. If I could quantify what has made our implementation a success I would record it as the following broad areas:

	
Developing a comprehensive technology plan that involved not just pedagogical outcomes but clear objectives, budget requirements, project responsibilities, training requirements, and an implementation strategy

	
Support for capital funding had to be achieved in order to implement the plan

	
Communicating and convincing senior district administration and school administration with the efficacy of the plan

	
Schools need to appreciate the vision of what the system could look like and the advantages it would bring to the teaching learning process

	
A commitment to hiring at least one staff person with the significant technical expertise to build, test, and refine the system

	
Garner the support of the district technology coordinator who had the educational background and willingness to support the project

	
Encourage existing district technology staff to become actively involved in the transition and training provided to facilitate their changing roles

	
Start with a pilot school to refine the image and debug a strategy for implementing the rest of the district once the image is developed

	
During implementation district tech staff remain at the school until staff are comfortable enough for them to leave

	
We emphasized refining and growing support to quickly react to questions, change requests, and training

	
Ongoing development and enhancement

Early on we determined that using Ubuntu Long Term Support (LTS) and the Linux Terminal Server Project (LTSP) would form the foundation for our systems. They are mature systems which have stood the test of time and ensured that our use of LTS would provide stability and sustainability. It has also enabled us to integrate other technologies including directory services using openLDAP, trouble ticket software using Request Tracker, management of our other devices with Puppet, incorporating learning management through the use of Moodle, creating social networks with Elgg and a host of other applications.

We have learned a great deal in the past nearly six years. With Microsoft’s stated end-of-life for Windows XP in April 2014, we are now preparing to transition the majority of our remaining XP computers to largely Linux and open source systems. We have developed strategies for helping teachers who instruct digital media, industrial education, business education, and so forth to use software which will run on our Linux diskless client systems and support the curriculum. This is not without its challenges, however, as the same support structure developed for our first implementation we will see another approximately 500 workstations move to open source computing models. The aggregate total of our existing 2250 Linux diskless clients will swell to over 2700 systems across 16 sites.

The reality of change

Now all of this may seem incredibly difficult and non-mainstream that educators would be loath to support. We of course do hear many of the common objections to this type of system at schools but on the other hand we also hear from more who appreciate the stability and currency of our systems. Elementary schools no longer get secondary school hand-me-down computers. Secondary schools use all new technology rather than off-lease computers. Our applications have current versions and can be updated on a more frequent basis. We can update an entire school of hundreds of workstations with a new image, including operating system changes, application changes, security updates and menu changes, in under 2 hours. I would be interested to hear from any Windows-based school district who can claim that!

An open source endorsement

In our conversations, I am often asked to cite examples of organizations which are much larger and more diverse than ourselves who are utilizing this kind of technology. Take Google for instance. Google employs technology which is almost a mirror of the kind of desktop strategy we use at elementary, middle, and secondary schools. Google uses a variant of Ubuntu called Goobuntu which Tom Bushnell calls "a light skin over standard Ubuntu". This system is used to support all facets of Google’s operation including programming and business functions. At Saanich, I am often asked if our implementation of open source software relevant to today’s world? If you consider Google to be a technical leader and epitomize innovation, then yes our students are getting the greatest exposure to systems that Google has as a foundation to build and maintain arguably the most progressive systems in the world.

If that isn’t an endorsement for exposing our children to open source software, I am not sure what is.

About This Series

The Open Voices eBook series highlights ways open source tools and open source values can change the world. Read more at http://opensource.com/resources/ebooks.

[image: Writer2ePub]

Created with Writer2ePub

by Luca Calcinai

OEBPS/images/w2e.jpg
Writer

