

Open Source Talks

OSCON 2014 speaker interviews
Open Voices, Issue 13
Opensource.com

Copyright

Copyright © 2014 Red Hat, Inc. All written content licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Introduction

The O'Reily Open Source Convention—or OSCON, as it's now popularly known—is one of the world's premier open source events. For more than a decade, open-minded developers, innovators, and business people have gathered for this weeklong event, which explores cutting edge developments in the open source ecosystem. And 2014 was no exception.

Eagerly awaiting another year of open source wonders, the Opensource.com community caught up with a handful of notable OSCON speakers to gather behind-the-scenes stories about their passions for open source. This book collects the interviews we conducted.

Open source's identity crisis (interview with Karen Sandler, Software Freedom Conservancy)

Bryan Behrenshausen (originally published July 2014)

For Karen Sandler, software freedom isn't simply a technical matter. Nor is it a purely ideological one.

It's a matter of life and death.

Sandler, Executive Director of the non-profit Software Freedom Conservancy, says software freedom became personal when she realized her pacemaker/defibrillator was running code she couldn't analyze. For nearly a decade—first at the Software Feedom Law Center, then at the GNOME Foundation before Conservancy—she's been an advocate for the right to examine the software on which our lives depend.

And, at this year's Open Source Convention, held July 20–24 in Portland, Oregon, Sandler will discuss a serious impediment to that cause: the way software developers negotiate their relationships with the projects to which they contribute. Difficulties advancing software freedom are part and parcel of this larger "identity crisis," she says.

We caught up with Sandler before she takes the stage at OSCON 2014.

What first attracted you to the issue of software freedom?

Well, at first, in the mid 1990s, when I was in school at Cooper Union, free software was a really interesting thing we were playing with in the computer lab. I remember thinking "this Linux thing is a neat idea ... too bad it probably won't go anywhere." Then I went to law school and became a cross-border securities lawyer, leaving most of my tech background behind. Eben Moglen (who had been one of my professors at Columbia Law School) formed the Software Freedom Law Center (SFLC) just when I had decided that I wanted to do something new.

I remember going into my first day thinking "open source is cool"; I wasn't really focused on the ideology. Working with SFLC's passionate clients opened my eyes to the important issues, and the ideology really hit home when I was diagnosed with my heart condition and prescribed a pacemaker/defibrillator. My life depends on the proprietary software that is literally connected to my heart. I can't review the code, and I know that there have been no proper procedures for its review by anyone else. What software does your life depend on? It may not be implanted in your body, but it may be controlling your car, helping you choose your democracies, and running your stock markets. It is impossible now for me to see software freedom as anything other than of core importance to our society as a whole.

Your professional work as an advocate for free and open source software began at the Software Freedom Law Center. Then you transitioned to the GNOME Foundation and, now, to the Software Freedom Conservancy—all in the span of about a decade. What ties all these positions together?

To be honest, it's funny to hear those as being separate! At SFLC I was providing the legal help to defend software freedom. GNOME was one of my clients. When I saw the first screenshots of GNOME 3 I knew that this new vision for the desktop was the way to go. I knew it would be impossible to get any mainstream adoption of free software without there being good looking, easy-to-use interfaces for new users, and I wanted to do everything I could to help.

Also while I was at SFLC, I co-founded Conservancy. We knew that free software projects needed a nonprofit home and the infrastructure to operate and that it was impractical for every project to form its own organization. I served as an officer of Conservancy since its inception. So with my move from GNOME to Conservancy, I've swapped my volunteer and paid roles. I'm very committed to both organizations and am pleased to say that I've recently been elected to the GNOME Board of Directors. So, I consider all three jobs part of the same important work for software freedom.

What's the most important lesson about free and open source software projects you learned while working as Executive Director of the GNOME Foundation?

There are so many lessons that I learned; the GNOME community is so amazing. One of the most important lessons is that good nonprofit ideology and governance is essential for a healthy free software community over time. It's important to lay down good groundwork early in a project to avoid control by one or two companies. While there has been a lot of interest by companies in GNOME, when it came time to setting up an organization the community decided on a 501(c)(3) charity. They got companies to participate in a non-voting advisory board which provided support to the Foundation but kept control in the hands of the community.

Conservancy is also a charity. In order to join, projects must be reviewed by our Evaluation Committee, and once they join they cannot allow any corporate control of their project. We even have project leaders subject to a formal Conflict of Interest Policy (which usually only applies to board members). Joining Conservancy is a statement that a project really is committed to the public good—and that they're willing to commit their assets to it permanently.

Also, a focus on ideology and a commitment to no corporate control motivates the community to do more, and for the right reasons.

What are your top priorities as you begin your work for the Software Freedom Conservancy?

Raising money to fund the good work of the organization. Want to donate?

I think the main thing I'd like to do is grow the organization to serve more fantastic free software projects and to help explain why their charitable nonprofit structure is so meaningful. Conservancy has been doing so much and with such little staff. We launched a project to work on free software that will help nonprofits with their accounting—something that proprietary software doesn't do well and exactly the kind of software that should be free and open. Right now most nonprofits rely on proprietary software and pay exorbitant licensing fees for software which fundamentally contradicts their underlying missions of charity and sharing. Worse still, the software that exists doesn't really do a great job at complicated nonprofit accounting. We'd like to make it so that nonprofits can work together to improve the situation. If we can get this project up and running it has the potential to save the nonprofit sector millions in licensing fees every year.

In a recent episode of your podcast, "Free as in Freedom," you explained the links between software freedom, technological access, and social justice. Tell us about those connections. Do we need to change the way we explain about free and open source software if we're going to successfully advance the cause?

Definitely. I read the article "The Meme Hustler" by Evgeny Morozov and it really got me thinking. He talks about how the free software movement was cleverly manipulated into the open source marketing campaign. I've never been one to get hung up on terminology, but I can see in retrospect how that marketing impacted my own thinking at the time. I don't care if we use the term "open source" or the term "free software" but I do care that we're talking about freedom.

Recently, when watching a few episodes of the TV show Silicon Valley, I got a little sick when I saw that the companies represented on the show all talked about making the world better through whatever profit driven software product it was that they were bringing to market. Being clear about our ideological goals and clearly connecting the dots between software freedom and social justice is important. Most of our developers know that software freedom is right but it's very hard to articulate, even for someone like me who's been trying to advocate to nondevelopers for a while.

I've been thinking a lot about the messaging in our movement because if we can't articulate why what we do is important, what are we doing? As we integrate software and in technology in general into our lives, it's becoming clear that we are making a grave mistake by letting single companies control the systems we rely on. We're building complex infrastructure where everything interacts with everything else—and we're only as safe as our weakest link. Software freedom is not the only piece in this puzzle but it is the cornerstone to ethical technology.

At OSCON, you'll speak about a persistent "identity crisis" in free and open source software communities. What, specifically, do you think is in crisis? What forces or factors contribute to these identity issues?

In free and open source software we all wear many hats. We use the term "we" to mean a nonprofit community of volunteers one moment and then "we" to mean our employers the next. Free software needs its contributors to be honest with themselves and each other about what their interests are and who they are speaking for at different times. We need better procedures in place for our community governance. How can we actually change the world if we don't know who we are and we're willing to let corporate influence overrun us? But I'll have to stop there as I don't want to spoil the talk!

From zero to Spark Core in two years (interview with Zach Supalla, Spark)

Jen Wike (originally published July 2014)

Spark is a company inspired by Zach Supalla's deaf feather.

"My dad has lights in his house that flash when someone rings the doorbell. I wanted to make lights that would flash when my mom texted him, so they could stay in better touch," explains Zach.

This led Zach to create a connected lighting product that his team launched on Kickstarter in late 2012 called the Spark Socket. The Socket was unsuccessful, but afterwards Zach pivoted his team to focus on developing tools for others building connected products.

How long have you been working with electronics?

I'm pretty new to the electronics world. I built my first prototype in January 2012, and that was the first time I touched electronics. I was encouraged by the amazing Arduino community and the wealth of resources available online from places like SparkFun and Adafruit. About a year later, I was making electronics designs on par with something that somebody with an Electrical Engineering degree might have created.

What are your products have you made related to the Internet of Things?

Our primary physical product is the Spark Core, which is a development kit for Wi-Fi connected products. It uses Wiring, the programming language made popular by Arduino, but integrates a Wi-Fi module and a cloud service to make it much more powerful and easier to use to build a connected product. The Spark Core hooks to Spark OS, which is our full-stack open source operating system for connected products, which extends from the device to the cloud to the user.

Our tools are innovative because we've created a system that makes it extremely easy to build very powerful connected products, and bring those products to market. We've thought of everything from ease of use to security and scalability so that our customers can focus on their products instead of on the underlying infrastructure.

You launched the Spark Core on Kickstarter. What do you think it and crowdfunding for open products?

We launched the Spark Core on Kickstarter because we wanted to see what the demand looked like (which turned out to be quite high). We were asking for $10K, and we raised nearly $600K in 30 days!

We also wanted to build a community around our product and gather feedback before we went to manufacturing. We would absolutely do Kickstarter again in a heartbeat; it was an incredible experience that helped define our company. We love crowdfunding because it completely changes the dynamics of creating a product; you can bring in an audience earlier, which leads to a better product, and the whole process is so much less risky because you can figure out demand so much earlier in the process.

I think what Kickstarter and the amazing products coming out of it prove is that there are huge opportunities available for entrepreneurs who want to bring a product to market. That means that so many "Makers" who spend their weekends tinkering with hardware could make it their life's work by starting a business around their ideas.

As for open source, I think that the electronics world has been proprietary for a very long time, but open source is taking its hold, and will eventually play a huge role, just like it does in software. The Internet is built on open source underpinnings like GNU/Linux, and I hope that soon the hardware world will be too.

What's your current project? What are you making better?

Everything. We're working on making our platform more reliable and easier to use, and soon we'll be thinking about how to extend beyond Wi-Fi and into other wireless technologies.

Give us a sneak peek into your OSCON 2014 talk.

At OSCON I'll be talking about our "open source Nest-alike thermostat," which we built earlier this year during a 24 hour hackathon. I hope to showcase how a product is built and introduce the audience to open source hardware tools like ours by walking through how we built a powerful prototype in a day.

Building, deploying, and distributing software with JFrog (interview with Yoav Landman, JFrog)

Travis Kepley (originally published July 2014)

Founded in 2008, JFrog provides open source solutions for package repositories and software distribution aimed at a new breed of developers. With a focus on open source and the burgeoning cloud scene, JFrog has garnered their fair share of awards and press from industry heavyweights and communities alike.

Yoav Landman, co-founder and CTO of JFrog, took some time prior to his trip to OSCON in Portland this year to chat with me about communities, open source, and some lessons learned on JFrog's journey so far.

First things first, I love that you are not shy about your open source heritage. The JFrog website homepage displays the Artifactory Open Source information. Can you fill us in on how JFrog leverages the greater community to build your solutions?

JFrog constantly interacts with many open source communities. This helps us make our products better by receiving constant feedback faster than we could ever have wished. Bugs, feature requests and random rants or praises via Jira, Twitter or Google+ usually land very quickly on open ears and are discussed and resolved publicly, which leads to a faster resolution.

Another thing we do is provide free service to open source communities, like Spring (Pivotal), Scala, Vagrant, Ruby, Groovy, Vertx and Jenkins. We are hosting their build artifacts on Artifactory Online and/or are responsible for the distribution of their OSS packages to end users via Bintray.com. This is the best way to stress-test our products, discover performance issues and other bugs and demonstrate to our paying customers how our solutions scale. The load and challenge created by servicing very popular open source projects is often vastly greater than that of commercial business.

Speaking of, if you had to describe the Artifactory community using only three adjectives and a color, how would you describe it?

Well-connected, vibrant, and eager to make things better.

Color: Green of course! What, else?

Betanews hosted a cool article by Fred Simon, co-founder of JFrog, about the power of the open source community. What would you say is the biggest lesson you personally have learned from the greater open source community?

Open source communities are the main drivers of innovation nowadays. It is the added value that commercial companies put on top of the open source that make them successful. The pre-condition, nonetheless, is having a core successful open source project or platform that has gained a large-scale community. You can find many examples of that today, where rapid community adoption has been the springboard for a successful company.

Also, the way I see this, open source today is not limited to open source software, but also to forming open source communities and providing platforms that serve and assist the growth of such communities. Examples are platforms such as GitHub and Bintray.

What has open source provided JFrog that gives you a leg up on your competition?

Quality, instant feedback on usability and bugs; being able to become better by answering the production needs of large scale communities that others don't get to serve; having many friends all over the world that love JFrog for its products (as well as people) and give us the greatest unbiased, candid PR.

Can you give us some insight on what OSCON goers can expect from JFrog at the event? What do you hope users of your software can gain from visiting you guys in person?

On Tuesday we are going to have 2 great talks, openly sharing our experience, challenges, and sometime frustration in building software that scales. We will be demoing Bintray and Artifactory showing some new exciting features, such as Bintray for Business and Artifactory's new support for NPM and Debian packages. You are also welcome to join us in an Open Hours discussion about continuous integration and delivery on Wednesday. And, as usual, we'll be giving away our highly sought-after SuperFrog tee's in the booth.

Given the nascent nature of cloud and JFrog's position in cloud architecture, what are some of the dangers you see as closed source companies start to enter the fray? How can we guarantee fair access to technology and information as we move software away from end-users' environments and control?

I believe the cloud will have an opposite effect on how things are done, causing things to be more open. With competition between cloud providers comes the need to have a reasonable data-out option. That means less vendor lock-in and more design by means of service abstraction.

Another rising need is having to have backup plans in the form of multi-cloud deployments and integration with private clouds.

These requirements have already led to open standards in service abstraction, and virtualization from development to production, with frameworks like Vagrant, Docker, etc. So at the end of the day, things are going to become more open, and companies that will try to enforce closed source stacks will not manage to stay in the game. Even giants like Microsoft have realized that and are embracing open source, either by open sourcing their tools or by promoting standards like Chocolatey and NuGet that push for open source consumption and running open source stacks on Azure.

It's better to share with functional programming (interview with Katie Miller, Red Hat)

Robin Muilwijk (originally published July 2014)

Katie Miller is a Developer Advocate at Red Hat for the open source Platform as a Service, OpenShift, and co-founder of the Lambda Ladies group for women in functional programming. She has a passion for language and linguistics, but also for the open source way:

I have a Red Hat sticker on my laptop that simply says: It's better to share.

In this interview, Katie shares with me how she moved from journalism to a job in technology. Also, how she got introduced to functional programming, the Haskell programming language, and how open source is part of her daily life.

What path did you travel to go from journalist to software engineer?

Writing and technology are both longstanding themes in my life. After school, I considered both journalism and information technology degrees. My love of language and linguistics and an unfortunate lack of confidence in my technical skills tipped the balance in favour of journalism. I don't think I was aware of computational linguistics as an option; it would have been the perfect blend. This is one reason why I take part in activities to inform young people about opportunities in the IT industry, such as the Tech Girls are Superheroes campaign and IBM EXITE Camps for teenage girls.

I worked in the news media for more than seven years and held a variety of roles. Managing a news website helped me to realise how much I missed tech, and I decided to return to university to study for a Master of IT degree. I rediscovered my long lost passion for programming and launched a new career as a software engineer. Last year I was given the chance to combine my communications and engineering skills by taking on a Developer Advocate role for Red Hat's open source Platform as a Service, OpenShift, and given my background it seemed like a perfect fit.

Tell us a bit about the Haskell programming language and the concept of functional programming.

My interest in Haskell and functional programming (FP) was sparked by a very passionate professor during my Masters. The subject covering FP and logic programming had been removed from the curriculum, but this lecturer offered to teach keen students the content in covert sessions in the campus library. After university, I joined the Brisbane Functional Programming Group and found six other FP novices with whom to work through the fabulous book Learn You A Haskell, from cover to cover.

Functional programming is a paradigm that treats computation as the evaluation of pure, mathematical-style functions. One of the big advantages of this approach is that it allows you to reason about your code, in the same way you can reason about maths equations. Haskell is a great language in which to learn FP concepts as it is purely functional and statically typed. This means you can spend a lot of time arguing with the compiler but once your program compiles it has a high likelihood of being correct. I think this is a big improvement on spending your time tracing values in a debugger and arguing with your boss about how that bug made it to production.

[image: Image1]

(Katie Miller at the Tech Girls are Superheroes book launch. Photo by David Ryan.)

Lets take a jump from Haskell and functional programming to the future of technology. If I say the future lies with our children, would you agree? Are CoderDojos and other programs like Europe Code Week enough? Or should we do more to teach our children digital skills?

The ability to code gives you the power to choose what your computer does for you, rather than relying on the interfaces others have created. I think all children should be given access to this power through programming classes. CoderDojo and many other volunteer-led programs are doing fantastic work on this front, but what I would really like to see is programming introduced to school curricula. I agree our future lies with our children, and I think we should be equipping them to be the inventors and masters of tomorrow's technology, rather than just its users. Estonia and the United Kingdom have moved to introduce programming education in schools, and I would like to see the same done in Australia and other nations. Not every child will become a software developer, just as not every child becomes a scientist or mathematician, but I think programming should be part of the life skill set that is taught.

Share with us how open source crossed your path? What aspects of open source do you like?

I was first exposed to open source in university, and that is also where I was introduced to Linux. The open source way made sense to me and was a major reason why in a city roughly equally split between Java and .NET, I chose to make my graduate job a Java role. My first IT employer, a financial institution, was fairly progressive when it came to open source and the role gave me the chance to use several FOSS projects. I had just started running Fedora on my personal laptop and built my first custom kernel when I decided to go for a job at Red Hat.

I love the way open source culture draws together people of all kinds from around the world, to change the world. It gives everyone the chance to share their ideas and make contributions that really can make a significant impact. Working for Red Hat gives me the opportunity to participate in that global collaboration as part of my everyday work, which is an amazing privilege. When I write code, at work or play, the default is always to open source, and thankfully I don't have to jump through any hoops to do that. It still always gives me a buzz when someone forks my code and submits a patch, or I have a pull request accepted. I have a Red Hat sticker on my laptop that simply says, It's better to share. That sums it up for me.

Can you give us the scoop on your OSCON 2014 talk?

I try to have a bit of fun with my conference presentations, and this one is no exception. I will be attempting to explain a series of terms commonly thrown around by FP fans in just three minutes each, which is going to be a serious challenge. I've called the talk Coder Decoder: Functional Programmer Lingo Explained, with Pictures, but I'm not much of an artist, so if nothing else people can come along to be entertained by the somewhat peculiar illustrations.

Why is Docker the new craze in virtualization and cloud computing? (interview with James Turnbull, Docker)

Jodi Biddle (originally published July 2014)

It's OSCON time again, and this year the tech sector is abuzz with talk of cloud infrastructure. One of the more interesting startups is Docker, an ultra-lightweight containerization app that's brimming with potential

I caught up with the VP of Services for Docker, James Turnbull, who'll be running a Docker crash course at the con. Besides finding out what Docker is anyway, we discussed the cloud, open source contributing, and getting a real job.

You've written a few books on various Linux subjects. How did you first discover Linux? What makes you so passionate about it?

I think I first stumbled over Linux in the mid-90s shortly after Debian was released. I'd worked with OS400, VAX/VMS, and SunOS previously but always in corporate environments. I don't think I immediately clued into exactly how powerful this whole "open source" thing actually was. When I discovered Linux, all of a sudden I had a desktop spec computer running the same tools and services that powered the Internet. It was pretty mind blowing. And importantly it was free. I didn't need to buy expensive hardware and operating system software to do these cool things. Then I realized that not only was it free but I got the sourcecode too. If something was broken or I wanted something more I could actually fix it (or at least take a stab at fixing it) or talk to someone else who could fix it. That feeling of ownership combined with the embryonic communities building around open source just amazed me. I've loved open source ever since.

Your bio says "for a real job" you're the VP of Services for Docker. Do you consider your other open source work a hobby?

That's mostly a joke related to my partner. Like a lot of geeks, I'm often on my computer, tapping away at a problem or writing something. My partner jokes that I have two jobs: my "real" job and my open source job. Thankfully over the last few years, at places like Puppet Labs and Docker, I've been able to combine my passion with my paycheck.

Open source contributors often speak about their work in that way; the lines between hobby and profession are very blurred in open source. Do you think that has a positive or negative impact?

I think it is both positive and negative across a lot of domains. It's positive that solutions to problems we solve in our jobs (like building tools, fixing bugs, writing documentation) can be shared with others and hopefully make someone else's life easier or get them to the pub faster. It's also negative in that being passionate about something so close to my day job exacerbates that sense that you're "always on."

I'm also conscious of how those blurred lines are impacting the diversity of our industry and open source communities. There is a perception, certainly in the startup world, that a good developer is one with a GitHub profile and who contributes to open source. I'm lucky enough to have the time, money, and education to be able to contribute to open source. But a lot of others don't have that privilege and that is at least partially responsible for shaping the very narrow demographics of many open source communities: white, male, educated. That perception of a "good" developer has become somewhat of a closed hiring loop and helps perpetuate the monoculture in open source and our industry more broadly. I think that's something we desperately need to change.

How did you become involved with the Docker project?

I came across Docker not long after Solomon open sourced it. I knew a bit about LXC and containers (a past life includes working on Solaris Zones and LPAR on IBM hardware too), and so I decided to try it out. I was blown away by how easy it was to use. My prior interactions with containers had left me with the feeling they were complex creatures that needed a lot of tuning and nurturing. Docker just worked out of the box. Once I saw that and then saw the CI/CD-centric workflow that Docker was building on top I was sold.

Docker is the new craze in virtualization and cloud computing. Why are people so excited about it?

I think it's the lightweight nature of Docker combined with the workflow. It's fast, easy to use and a developer-centric DevOps-ish tool. Its mission is basically: make it easy to package and ship code. Developers want tools that abstract away a lot of the details of that process. They just want to see their code working. That leads to all sorts of conflicts with SysAdmins when code is shipped around and turns out not to work somewhere other than the developer's environment. Docker turns to work around that by making your code as portable as possible and making that portability user friendly and simple.

What, in your opinion, is the most exciting potential use for Docker?

It's definitely the build pipeline. I mean I see a lot of folks doing hyper-scaling with containers, indeed you can get a lot of containers on a host and they are blindingly fast. But that doesn't excite me as much as people using it to automate their dev-test-build pipeline.

How is Docker different from standard virtualization?

Docker is operating system level virtualization. Unlike hypervisor virtualization, where virtual machines run on physical hardware via an intermediation layer ("the hypervisor"), containers instead run user space on top of an operating system's kernel. That makes them very lightweight and very fast.

Do you think cloud technology development has been heavily influenced by open source development?

I think open source software is closely tied to cloud computing. Both in terms of the software running in the cloud and the development models that have enabled the cloud. Open source software is cheap, it's usually low friction both from an efficiency and a licensing perspective.

How do you think Docker will change virtualization and cloud environments? Do you think cloud technology has a set trajectory, or is there still room for significant change?

I think there are a lot of workloads that Docker is ideal for, as I mentioned earlier both in the hyper-scale world of many containers and in the dev-test-build use case. I fully expect a lot of companies and vendors to embrace Docker as an alternative form of virtualization on both bare metal and in the cloud.

As for cloud technology's trajectory. I think we've seen significant change in the last couple of years. I think they'll be a bunch more before we're done. The question of OpenStack and whether it will succeed as an IAAS alternative or DIY cloud solution. I think we've only touched on the potential for PAAS and there's a lot of room for growth and development in that space. It'll also be interesting to see how the capabilities of PAAS products develop and whether they grow to embrace or connect with consumer cloud-based products.

Can you give us a quick rundown of what we should expect from your Docker presentation at OSCON this year?

It's very much a crash course introduction to Docker. It's aimed at Developers and SysAdmins who want to get started with Docker in a very hands on way. We'll teach the basics of how to use Docker and how to integrate it into your daily workflow.

Girls' skills are needed in tech (interview with Jennifer Davidson, ChickTech)

Jen Wike (originally published July 2014)

ChickTech is based in Portland but plans to be nationwide by 2016. After interviewing Jennifer Davidson about how ChickTech gets girls involved in tech, I have high hopes it's even sooner.

The non-profit targets girls who would never nominate themselves to participate in a tech workshop and who wouldn't dream of a career in tech. Why? Because they've never had someone believe their skills were valuable in that world. I believe that our society understands that girls' skills are needed in tech, we've just needed support for our girls like we've shown for our boys.

At ChickTech, women like Jennifer Davidson and ChickTech founder Janice Levenhagen-Seeley, give girls a chance. A jumping off point. A view into a world that can also be theirs.

ChickTech will host Open HeARTware workshop at OSCON 2014 on July 20.

What drove the creation of ChickTech, and what does it do?

We started ChickTech because we've experienced, first-hand, the lack of gender diversity in tech careers. Without this gender diversity, women don't have a workplace that helps us feel like we "belong." So we decided to create a nonprofit that would change that by creating a community of support for women and girls, provide them with fun and exciting workshops to improve their confidence and abilities, and change tech culture for the better. Our general mission is to get more girls and women in tech and to retain the women who are already there.

We're based in Portland, Oregon, but we're quickly expanding to cities around the United States. Our current focus is ChickTech: High School, a year-long program for 100 high school girls to participate in project-focused tech workshops, internships at local tech companies, and a mentorship program with local tech professionals.

Tell me about your role as program manager and how the leadership teams work.

I help with every aspect of ChickTech, from helping Janice, the Executive Director, shape ChickTech's vision to event planning to grant writing. However, a normal program manager would head up a leadership team in a specific city. So, in addition to helping with everything else, I also head up the leadership team in Corvallis as we plan a weekend-long event at Oregon State University. It'll be the first event where the high school girls will get to stay in the residence halls on campus. We're excited to provide a first-time college experience for many participants.

Each ChickTech chapter (currently Portland, Corvallis, and San Francisco) has a leadership team whose job it is to organize volunteers to run events for the ChickTech: High School program. We implemented leadership teams with a goal of building community amongst local tech professionals and university students; these volunteers work together to make positive change in their communities by introducing girls to technology.

What are you trying to get across with the ChickTech: High School program?

The main goals are to show girls that they do belong in tech, that they can do it, and that their skills and talents are absolutely needed. ChickTech seeks to increase participants' confidence in their tech skills and seeks to build a tech community for participants to provide a sense of belonging and support. In the United States, many girls are brought up to believe that "girls can't do math" and that science and other "geeky" topics are for boys. We break down that idea. We fill a university engineering department with 100 high school girls—more girls than many engineering departments have ever seen. The participants can look around the building and see that girls from all backgrounds are just as excited about tech as they are.

We see such positive change in girls over just a 2-day event. We don't want to change the girls to fit the current technology culture, it's to ready them to improve that culture and their communities with our help.

The ChickTech: High School program starts with a 2-day kickoff event. Each girl participates in 1 workshop for a full 2 days, ranging in topic from robotics to user experience. Workshops are developed in collaboration with ChickTech leadership, local tech professionals, and university students. At the end of the workshop, girls have a customized project that they can take home. ChickTech doesn'tbelieve in boring tutorials or panels. Instead, ChickTech volunteers work with the girls to create a project of their very own. Something that the girls can be proud of, that they can take home as a reminder of what they learned and what they're capable of.

Well over 60% of ChickTech: High School attendees have never participated in any tech-related event (programming, robotics, etc.) before. And to take a girl who has no exposure to tech before the 2-day event, to have a customized, operating robot by the end of that weekend is quite powerful.

After the 2-day event, we have monthly workshops that revisit some topics from the 2-day workshop, but also give them the chance to explore how technology has revolutionized many industries, from medicine to fashion to films. Our mentorship program is in its first year in Portland, and it's having a great positive impact. We do team-building activities between mentors and mentees, and we encourage mentors to bring their mentees to user groups and tech events around Portland to really help them feel like they have a welcoming tech community.

Do you use open source software and hardware in your high school and adult workshops?

We use and promote open source tools and products because we want to lower the cost barrier to entry for the girls. We want them to be able to install and use these tools when they get home to continue their projects. For example, our website design and creation workshop uses Drupal, and we use open hardware (Arduino) for our soft circuits workshop. In our computer construction course, we teach girls how to install Ubuntu on a desktop machine that they built (and that they get to take home!).

Personally, I am passionate about open source and open knowledge, and I think it's a fabulous way to share knowledge and ensure that people from all backgrounds have access to tech.

What is your experience working with teenage girls?

My first role in ChickTech was as a "Designing Experiences" workshop lead. I worked with a team of volunteers to create the curriculum and conduct a workshop related to User Experience. Conducting this workshop was an example of how ChickTech does not only positively influence the girls who attend, but also the volunteers. My confidence went through the roof because I learned that I knew enough about my field to teach it, and teach it in a way that high schoolers would understand and find interesting. I had a great time with the girls in the workshop, and it was inspiring to hear things like, "I could totally see myself doing this for a job!" and "People get paid for this? Cool!" The User Experience workshop involves local non-profits as clients, and the girls are grouped into teams and tasked with designing a solution to the non-profits' tech issue. We have the clients pitch their ideas to the girls, and the girls get to pick which non-profit they work with.

They work on real problems, with real clients. One of our clients, Wearshare, found the experience so useful that they are hosting ChickTech interns this summer.

The part of ChickTech: High School that is both unique and extremely effective is the fact the girls are nominated to attend. This sends them the message that they were selected for this special opportunity because someone believes in them. We ask high school career counselors and teachers to nominate up to 15 girls from their school who they think would excel in tech but who aren't engaged in tech opportunities yet. In addition to reaching out to public schools, we also reach out to the Boys & Girls Club, and alternative schools. Because we specifically ask schools to find girls who have no tech experience, and who may not consider tech without an extra push; we reach the girls who will not self-nominate and have a very low chance of choosing a technology career without us. We also ask that at least 33% of nominees are eligible for free/reduced lunch. To make this program accessible to all, our events are completely FREE for attendees, and we provide meals and transportation for those who need it. It's *never* too late to become a technology creator, and we pass that on to these amazing high school girls who may very well find their passion is in tech.

Many girls in our program do not realize the many choices they have in tech. The big problem is that, before entering ChickTech, they didn't have a community that knew or cared about tech. We provide that. We've seen girls write about ChickTech in their college essays and switch their career path from dental assistant to engineer. ChickTech works, and it's because of the passion of the founder, the passion of our volunteers, and our excitement about creating a safe, welcoming, and inspiring environment for these girls.

ChickTech coordinates workshops for adults too. Who leads these and what skills are taught?

Currently, ChickTech: Career has done events in Portland. ChickTech volunteers lead these workshops, and our volunteers are made of tech professionals from around Portland. Our signature ChickTech: Career event is called "Advancing the Careers of Women in Tech," and has been held for two years at Puppet Labs in collaboration with the Technology Association of Oregon. It attracted over 270 women and provides one-on-one resume and interview advice with tech recruiters, along with skill-building workshops like introduction to open source and introduction to website development.

We've also run Arduino workshops for career level women. In those workshops, women come from all backgrounds to learn about open hardware and how to program it. For many of these women, this is their first experience with programming, and especially programming hardware!

Tell me about the workshop you'll be holding at OSCON 2014 this year. How will it be similar or different than other events ChickTech has run in the past?

Open HeARTware with ChickTech is similar to our "soft circuits" and "microcontrollers" workshops that we have run with high school students. I participated in one of these workshops with the high schoolers, because I had personally never touched hardware before; I was a software person through and through. You'll notice I said "was." After participating in our workshop, I had the confidence to create with hardware and now I have so many ideas! One of which is creating light-up jupiter earrings like Miss Frizzle in the Magic School Bus. Anyhow, we'll be enabling attendees of this workshop to create a creature with felt, use conductive thread and LEDs to learn about circuits, and to learn how to reprogram the LEDs and speakers. We capitalize "ART" in this, because these projects are quite creative, and ChickTech seeks to show how creativity is used in all forms of technology.

This workshop will be different in that we will encourage men to be participants as well. We encourage both novices and experienced people to sign up. We want to teach novices (like I was) that hardware isn't scary, and that you can create fun things with it. We want to give experienced folks the tools necessary to take this workshop back to their communities and start doing outreach to get more women in tech.

What other great companies out there does ChickTech partner with to get girls involved in coding and hardware?

We partner with a bunch of folks! This summer, we're working with Girls, Inc. to run two 1-week long workshops about smartphone app development. We partnered with Girl Scouts to run workshops about programming for younger girls. HP, Intel, Garmin, Tektronix are just a few of our sponsors. We also have strong support from Portland State University and Oregon State University with our mission. As I briefly mentioned earlier, we partner with organizations to get internships in Portland for ChickTech attendees. Free Geek, Simple, HRAnswerLink, and the City of Portland have provided internships for our girls and have shown their commitment to diversity in tech.

Even with this support, we are completely volunteer-run. To make ChickTech sustainable, we're looking for donations so we can have a few paid employees. Our goal is to be nationwide by 2016.

Final thoughts?

ChickTech works, and things in tech need to change to include more women.

3 ways to contribute to Firefox OS (interview with Benjamin Kerensa, Mozilla volunteer)

Bryan Behrenshausen (originally published July 2014)

Firefox OS, Mozilla's open source mobile phone operating system, needs developers. And Benjamin Kerensa knows just where to find them.

A Firefox OS evangelist and volunteer working as the platform's Early Feedback Community Release Manager, Kerensa will use his time on stage at this year's OSCON to wage a recruitment effort. Along with Alex Lakatos, Kerensa will present Getting Started Contributing to Firefox OS, an introduction to building applications for the operating system. Attendees will learn how Firefox OS embodies Mozilla's commitment to open web standards like HTML, CSS, and Javascript.

In Kerensa's opinion, those attendees are some of the sharpest around.

"For me, OSCON is a really special event because very literally it is perhaps the one place you can find a majority of the most brilliant minds in open source all at one event," Kerensa wrote recently.

His talk arrives not a moment too soon, as Flame, Mozilla's flagship phone running Firefox OS, is about to drop—a golden opportunity for open source app developers.

Kerensa spoke with us about what makes Firefox OS so special and what it's like to teach mobile phone carriers the open source way.

Explain the philosophy behind Firefox OS. How does the project express Mozilla's mission more generally?

I think that, simply put, the philosophy behind Firefox OS is really pushing the web forward by creating an amazing new platform where HTML5 is a first class citizen. This ties in really well with the mission Mozilla is trying to achieve overall which comes back to pushing the open web forward and really ensuring that it reaches as many people around the globe as possible.

What differentiates Firefox OS from other mobile operating systems?

In my opinion, the biggest difference is that Firefox OS is a mission driven platform, and Mozilla is interested in using it to bring real change to users, while other platforms focus only on market share and keeping both investors and partners happy.

I think other mobile operating systems are starting to pay attention to what Mozilla is doing here with this idea of pushing forward an open platform that anyone can hack on and that one of the largest developer segments in the world can build apps for.

How does the work of developing an entire mobile OS differ from that of developing a web browser?

Many of the development processes are the same since Mozilla operates as an open source project, so we use often the same tools to get the job done. I think the big difference is more at the level of delivering the platform to users and working with carriers and hardware partners.

Many of these partners are used to the closed door processes of other operating system (OS) makers. So it's obvious there are some battles to be won in terms of getting partners to operate more openly and sometimes there are lines that hardware partners are not yet ready to cross. But I think the fact that Mozilla is working with these companies and having conversations about how Mozilla makes software is definitely having a lasting impact on the industry.

I think, with each iteration, the process of developing Firefox OS is becoming easier since we're learning more from each release. We continue to refine not only the product but also the experience for our users in terms of polishing documentation and improving the support experience. We owe a lot of thanks to our worldwide community of contributors that enable us to scale as a project, to support these users, and deliver a great experience.

What challenges do you face as you pursue Firefox OS's wider adoption?

I think as a community and project, the biggest challenge Mozilla faces is scaling to ensure we have enough contributors right there helping drive these projects forward. While we have always prided ourselves on having one of the largest open source communities, we are continuing to seek growth so we can scale to take on these new projects like Firefox OS.

One thing any project of our size has is growing pains, and I think we definitely are facing some of those and learning how to scale our resources, support, and mentorship for our contributors who are helping us to grow our community.

Your OSCON presentation promises to teach developers how they can start contributing to Firefox OS. What's the quickest way someone can start productively aiding the project right now?

There are so many ways that potential new contributors can get involved in contributing. I want to point out three ways to contribute.

The first two are Bugs Ahoy and What Can I Do for Mozilla. These are tools created by the community. Then, there is one excellent external project called OpenHatch, which also offers ways to contribute to Firefox OS.

Another way to get involved is for those interested to connect with someone from one of their local communities. Mozilla has reps and other community contributors in many countries so this creates a great opportunity for new contributors to receive mentorship and help along their path of becoming a more seasoned contributor.

Finally, I will highlight the most important way folks can contribute to Firefox OS and that is creating an app for the Firefox OS and submitting it to our marketplace.

Understanding the metrics behind open source projects (interview with Jesus M. Gonzalez-Barahona, Bitergia)

Jason Baker (originally published July 2014)

What do the numbers behind an open source project tell us about where it is headed? That's the subject of Jesus M. Gonzalez-Barahona's OSCON 2014 talk later this month, where he looks at four open source cloud computing projects—OpenStack, CloudStack, Eucalyptus, and OpenNebula—and turns those numbers into a meaningful analysis.

And Gonzalez-Barahona knows analytics. As co-founder of Bitergia, he is an expert in the quantitative aspects of open source software projects. Bitergia's goal is to analyze software development metrics and to help projects and communities put these numbers to use by managing and improving their processes.

In this interview, Gonzalez-Barahona spoke with me about his OSCON 2014 talk, leveraging metrics, trends, visualization, and more.

Without giving too much away, what will you be discussing at your OSCON talk?

I will be presenting an analysis of the development communities around four cloud-infrastructure projects: OpenStack, CloudStack, Eucalyptus and OpenNebula. I will try to show how, even being wildly different in many aspects, they (or at least some of them) also show some similar trends.

Tell us a little bit about Bitergia. What is exciting about the exclusive focus on open source projects?

We believe that for making rational decisions involving free and open source software, you need to have the communities and development communities in mind. And for that, you need the numbers and data that characterize them. We are aimed at providing those data and helping you to understand it. Open source software projects are the most exciting area of the whole software development landscape. Helping to understand them, and giving people tools to improve their knowledge about projects and communities is keeping us really happy, and is a continuous source of fun.

What metrics do you think are most important for open source projects to be aware of? Do they differ from project to project?

They may differ from project to project, but some metrics are useful. For example, those determining the age of developers by cohort (or generation), which shows almost immediately the attraction and retention of developers that a project is experiencing over time. With just a quick browse you can determine if experienced people are still around, if you're getting new blood, or if you have a high burn-out. Company participation is also interesting, from a diversity point of view. And of course, there are those metrics related to neutrality: how companies and independent developers interact with each other, if some of them get favored when they interact, or not. Activity metrics have been used for many years, and those are also obviously interesting too. And now, we're working a lot on performance metrics: how well is your bug fixing working, or which bottlenecks you happen to have in your code review process.

How might a project leverage metrics to inform decision making? What is the best example you can think of showing how a project can improve from what they have learned?

Just two examples:

After seeing their aging metrics, a certain company decided to invest in a whole new policy to keep developers involved in their pet projects because they realized they were losing too many of them for certain cohorts, and they were really risking not having experienced developers in one or two years.

With some open source foundations we have been working on very precisely determining the participation and effort by developers affilated with certain companies, because that was central to the negotiations between these companies in deciding how to coordinate to support the project.

As you've worked with the metrics of various open source projects through the years, what has stood out to you as surprising? Are there any trends which seem to be emerging?

Something that you see once and again is how corporate support matters a lot in some big projects. Granted, individual developers are important, but a medium/large company can decide to double the number of developers just by assigning experienced people to the project, thus boosting it and generating a lot of momentum. But the process is not easy: you have to carefully understand the dynamics, so that you don't cause burn-out in volunteer developers or in others from other companies that are not investing in the project at the same pace. Some may think that "helping to accelerate" a project is just a matter of pouring money (or developers) on it. On the contrary, we see it's almost an art: you have to carefully track what's happening, and react very quickly to problems, and maybe even slow down a bit as to not completely trash the effort. But we've also seen how, when it works, it is really possible to come from almost zero to hundreds or even thousands of developers in just a few years, and still having a sustainable and healthy community.

How can visualizations help quickly provide a snapshot of data to a project's community in a meaningful way?

There is so much data around that you need the right visualization to find out the interesting information. The appropriate chart, or in some cases just the appropriate number, can provide you much more insight than a lot of data. I guess this is usual in big-data problems anyway. Consider that analyzing large open source software projects is a matter of analyzing millions of records (commits, changes in tickets, posts, etc.). Either you have the right visualization, or you're lost.

Why it is important to have open source software tools to analyze open source projects?

If you look around, several systems for analyzing and visualizing open source software development are emerging. But unfortunately, most of them are proprietary. And I say unfortunately because that's a pity for the open source software community at large. It's not only that maybe you don't have the resources to use those systems, or that you cannot use them as you would like because you don't control them. Even when they are free, and you basically have what you need, they may still not be benefiting you as much as you could. You cannot innovate as you would like. You cannot adapt the system as your needs evolve. You cannot plug in at will with other data, or to other systems.

In short: you are not in control. This is not new, it is just the list of reasons why we all prefer open source software and find it more convenient and competitive. But it is for me of special concern that, in a field that we need to better understand how our projects work, we would have the only option of using proprietary systems or services. Having all the software be open source, all the data public and available (including intermediate data) is of paramount importance to the distributed control and improvement of open source software during the next years.

Asciidoctor coder writes less documentation (interview with Sarah White, OpenDevise)

Nicole C. Engard (originally published July 2014)

I've been working as the documentation manager for the Koha project for six and a half years, so when I saw that Sarah White would be talking about documentation at OSCON this year I knew I wanted a chance to interview her.

Sarah will be giving a talk entitled Writing Documentation that Satisfies Your Users. Sarah believes in helping users succeed at solving their problems by working on and helping others write documentation for open source software, and I have to agree with her that one of the best parts of working on an open source project (not just writing the documentation) is getting to meet awesome people!

Learn more about Sarah in my interview with her. And, make sure you stop in to meet her at OSCON 2014 if you're there.

How did you get involved in open source?

I discovered open source software when I was in college and working with ginormous CSV tables and satellite images. My classes and job required collaboration between academic institutions and government agencies and finding ways to integrate data from lots of sources. Open source projects were absolutely integral to injecting the data into proprietary programs and extending those programs' capabilities. For me, open source has always provided customizable and flexible solutions. Since getting involved in open source over 15 years ago, I've never encountered enough compelling reasons to switch from a Linux OS or open source tools.

Why did you start OpenDevise?

I started OpenDevise with Dan Allen to help open source projects communicate clearly and effectively with their user and development communities.

Have you written (or assisted in writing) documentation for any open source projects?

I'm currently working on the documentation for the Asciidoctor project, and I've written educational content for Arquillian and Fedora.

What have you learned working on open source documentation projects?

Documenting open source projects is time consuming. It's also fun and invigorating. When you're creating documentation for a project you get the pole position at the intersection between a project's maintainers and users. You're helping users succeed at solving their problems while collaborating with developers to improve the usability of the project. And the best part of writing documentation is that I get to meet lots of awesome people.

What are your favorite open source tools?

Fedora, it's clean, modern, fast, and just works no matter what external devices I throw at it. Arquillian, because accurate testing is a must, and the community is one of the greatest. Open source. Communities. Ever. Git, without version control I'd be locked in a little padded cell. Blender and darktable, they make my life beautiful and are uber powerful. And last, but certainly not least, are my two favorite writing tools, gedit and Asciidoctor.

How did the Asciidoctor project come about?

In 2012, developers at GitHub began a Ruby implementation of AsciiDoc and open sourced the project. Matthew McCullough had recommended AsciiDoc to Dan and I earlier that year when we were evaluating markup languages that played well with GitHub, GitHub Pages, and Ruby-based static website generators. Dan and I helped finish the first compliant version of Asciidoctor (0.1.0) in early 2013, and Ryan Waldron handed the project over to us. Since then, the Asciidoctor community has rapidly advanced and improved the software's capabilities. The Asciidoctor Project now encompasses more than 30 repositories—you can output PDFs and slidedecks, view your content live, in-browser, with the JavaScript implementation, and integrate with Gradle and Maven. Note: AsciiDoc.py was created by Stuart Rackham.

When an open source project is lacking in documentation, where does one start? How does one not only write the documentation, but get the community to support and participate in their efforts?

When a project doesn't have documentation, I get together with the project maintainers and find out what their vision and goals are for the project. At the same time, I talk to the project's users and learn about the project from their perspective. What are they using the project for? Where and how are they using it? How does it help them? What problems have they encountered while using (or trying to use) the project?

Additionally, I collect and analyze all the content I can find about the project such as blog posts, presentations, screencasts, etc. I also dig through the issue tracker, mailing list, discussion list, social media mentions and any analytics I can get my hands on. Finally, I walk through the code and try to use the project without any assistance. What's the point of gathering all this information? To determine the current and acute pains of the users. I use those pain points as a way to focus the initial documentation, like README files and tutorials, so it answers the most common needs and questions of the users.

Is there a method you find that works best for documenting software? Groups working simultaneously, an individual documentation author, some combination of the above?

I haven't found a silver bullet workflow for documenting software because every project and its ecosystem is unique. But I do know how to spark the process. You've got to get information about the software flowing from the project maintainers and core contributors. They are an untapped mine of information, but that information tends to get stuck in their heads. A tactic I used for one successful project was to ask the maintainers and developers to tell me one reason they loved their software.

I discovered a plethora of essential benefits and features to document. And a lot of that documentation now existed in the form of email replies. I just had to structure it. This brings to mind one of my favorite quotes on the subject.

Most people are OK with writing e-mails. They don't consider this writing. There's no writer's block. Someone asks you a question, you reply and type away.—Stoyan Stefanov

Which leads me to another key part of the process: make the contribution workflow as basic as possible. Throw out as many rules, requirements, and tools as you can. Nobody likes rules anyway. And they're just one more thing that has to be written, edited, and maintained. I don't know about you, but I'd rather spend my time writing code snippets that chronicle the adventures of wolpertingers, aliens, and lost defensive operations manuals.

Justin Miller on how Mapbox runs like an open source project (interview with Justin Miller, Mapbox)

Michael Harrison (originally published July 2014)

Justin Miller is an open source vet. He's the lead developer on the Mapbox mobile team, but he's been through the ranks. He worked on Linux.com, put in his time as a sysadmin, and then made his way into mobile development.

Now Justin is working at optimizing Mapbox's rendering technology and helping developers use its framework to join map data with all sorts of great geolocation purposes. He's talking at OSCON 2014 later this month about how the Mapbox organization runs like an open source project, and in the interview below, he discusses how that approach has made Mapbox the mapping tool of choice for big players like Foursquare and Pinterest.

What's a typical day at the office?

I work for Mapbox remotely, but we do have offices. We've got about 30 folks in Washington, D.C., 15 in San Francisco, and about a dozen of us are remote in the U.S. and Canada, Europe, and South America. We operate in a distributed manner, even when in person, largely using communication on GitHub, through many open source repositories, and some internal issues-only projects for operations, strategy, customer collaboration, outreach, and the like.

As far as a typical workday, I do a bit of customer support on our own site and on Stack Overflow for our mobile tools, spend some time strategizing with teammates, but mostly I'm found coding on mobile tools in Objective-C, C, and C++. I also do a fair amount of reading to see what else is going on in the company, whether that's peeking in on discussions—everything is open to everyone internally—or reading "devlogs" by my teammates, which are basically blog-caliber posts about recent work to the internal team. Very frequently, we will take those devlogs and massage them into a public blog post because they are so interesting and enlightening. A great example by my teammate Amit Kapadia is here: Debanding the world. We typically blog at least once a day with a lot of substance about new efforts, technical deep-dives, partnership launches, or other topics. So most days, I'm also either writing or helping copyedit a blog post, too!

Any new developments at Mapbox that you're excited about?

The most exciting thing to me right now is Mapbox GL, which we launched in early June on iOS, Mac, and Linux, and which is coming soon to the web and Android. It's a complete reimagining of our map rendering technology that moves from pre-generated raster imagery of maps to a lighter-weight vector format that is rendered on the client with OpenGL. We've always focused on custom design, interaction control, and offline capabilities with our mapping technology, but with Mapbox GL we are moving all of that towards a goalpost of design at 60 frames per second. We are hoping to unlock new possibilities, especially on mobile, with developers being able to join mobile sensor inputs like heart rate monitors, pedometers, and altimeters with custom map rendering to make the map a living, breathing canvas for things like fitness apps and other geolocation uses.

Your talk is about Mapbox and OpenStreetMap and how companies are switching to it over closed mapping systems. Can you give a few examples of projects using the OpenStreetMap library?

Sure. Some of the projects that are now using—and contributing—to OpenStreetMap by way of Mapbox include Foursquare for the maps that you checkin on, GitHub for the maps that help you visualize your projects' geo data files, and Pinterest for the maps that you pin places to. On the smaller scale, we've had apps that are all-in-one resources to the Tour de France, geolocation checkin games where your local convenience store is full of zombies during the apocalypse, and offline hiking maps for outdoor enthusiasts. We have a great showcase of beautiful uses of OpenStreetMap along with links to their project pages for more info or to try them out.

Mapbox is "running a business like you would run an open source project." Can you elaborate on what that means?

This is the meat of my talk, but basically, the organization is flat and open. People join in on projects based on interest and available time, or start their own projects based on an idea and the ability to convince a couple coworkers that it's a worthwhile effort. If you have an idea for improvement, talk is cheap and putting in the code to demonstrate its potential is preferred. It's a very exciting way to choose direction and participation and lets everyone engage based on their interests and skill set. And nearly everything we write, anything that's easily reusable by someone else, is completely open source.

What brought you to Mapbox and open mapping? What are some of your past jobs?

I've been in open source for a long time. In the late 90s, I worked for VA Linux Systems on the original Linux.com portal as the links manager, helping people find Linux and open source resources. I also cofounded a few startups where I was in charge of the web infrastructure, so I spent a long while as a sysadmin on Linux, Apache, MySQL, and various mail servers doing datacenter installs, including with Voxel.net, which was an early SourceForge and PHP mirror. I moved from there into sysadmin for non-profits and political campaigns, first as a consultant at another small startup and later on my own, where I also did a lot of freelance work on iOS and OS X as well as PHP development. When the iPhone and smartphones hit in 2008, I was already half a decade into open source Cocoa development, and that led me back to some contacts in the non-profit and NGO space who were moving towards open data-based maps and what eventually became Mapbox in 2010. I've been working fulltime on Mapbox since early 2011, and I've seen the company grow from about a dozen folks to over fifty today.

What's your preferred repository tool and why?

Git and GitHub. The integration between code, discussion, inline commentary, and notifications is superb. Mapbox runs on over 250 repositories for everything from code to office equipment buys to travel planning to business strategy.

How can our readers reach out to you or to Mapbox if they're interested in learning more?

We blog nearly every day, or you can reach Mapbox on Twitter at @Mapbox and me at @incanus77.

Is making your product free and open source crazy talk? (interview with Patrick McFadin, Datastax)

Scott Nesbitt (originally published July 2014)

Making money from open source. To many in the corporate world, that seems like a contradiction in terms. How are you supposed to make money from something that you give away? they ask. It can be done. A number of companies, large and small, have done quite well in the open source space over the years.

Just ask Patrick McFadin. He's the chief evangelist for Apache Cassandra at DataStax, a company that's embraced the open source way. He's also interviewed leaders at a number of successful open source companies to gain insights into what makes a successful open source business.

At this year's Open Source Convention, held July 20–24 in Portland, Oregon, McFadin will discuss how to make money with open source software (OSS) without deviating from the core principles of open source. In McFadin's words:

I'm not bringing a magic formula, but I can offer advice to people getting started. There are plenty of pitfalls going from an OSS project to OSS company, and I've seen quite a few in my career.

I caught up with Patrick McFadin before his talk. Here's what he had to tell me.

Why would a company or an entrepreneur want to go the open source route?

If you are looking to be competitive with software, closed source has become an impediment. I say that especially about software in the infrastructure, such as servers, tools, and libraries. The genie is out of the bottle and running open source has gone from being the exception to more of the rule. That an engineer can look at the source code, see the product features being worked on, and file new issues or features imparts a level of trust you can't get in other ways.

If your software is hiding behind marketing glossies and your competition isn't, that's going to be tough sell. I feel somewhat validated as I see many companies that were previously closed source only, trying to open source software as a way to stay competitive.

What advantages does being an open source company offer?

The big advantage of open source over closed is adoption. When you release your masterpiece to the world, you have no credibility or trust built up. A user has to feel that downloading your software is a good idea and carries a manageable risk. If you consider the free as in beer aspects of open source, having fully functional software, with no limitations, free for the downloading, eliminates a lot of perceived risk. If it doesn't work, you have only lost some time understanding why.

I think of the way we have done business in a closed source world, which wasn't that long ago. Organizations have built up a massive processes to evaluate products only to make sure there is a fit for the needed use case. I blame the rise of the Request For Proposal (RFP) on closed source software. Endless lists of will your software do this or that. If you are considering an OSS project, it will take less time to download and try than to generate an RFP.

What, in your experience, are the most effective business models for an open source business? Why?

The easy trap when starting a business plan around open source is to become a services company. Consulting, training, and support are all very important. But they're difficult to scale and as a company, have low valuation.

If you are into software, you need to be a product company. This means selling a license at a unit cost. The license can include support and other services, but it can't be a service contract. This also means you need to throw in some closed source software as part of the license. It's a fine line of how you mix in closed and open and can be a hot button issue for people supporting pure OSS. My criteria is never close source anything that may degrade the open source version. Open it up, and just be OK that some people will never buy your software.

Where do you find that the main opportunities in open source for businesses lie?

Product companies can have much better outlook than service companies just from a risk perspective. When the company's success is driven by the knowledge of a few people, the loss of those people can be devastating. I've seen entire teams in Silicon Valley move from one company to another. If you are selling a product, it will still hurt but you can hire more people and the product will live on. If the value is in the mindshare, you may not recover.

That's not to say that product companies aren't risk free. You are still faced with challenges in adoption and sales. Convincing organizations to pay for something that is free to download means you have to be good at showing value. Companies everywhere are adopting OSS but are not ready to be deep experts in whatever software they are using. That's where the value proposition lies and hitting that is critical to staying in business.

What, if any, are the barriers to entry?

The first barrier is just understanding your market impact. Is there enough demand to support a sustainable business?

The second is convincing others that there is a market. It's not an easy telling people that part of your business plan is to make your main product free and open. In the traditional business sense, that's just crazy talk.

Fortunately, those barriers are lowering as OSS becomes more mainstream and can be backed with real data. I was recently at a OSS business conference where there were plenty of executives and investors in attendance. Finding those like-minded individuals will help you be successful. Creating a business around a project can help nurture it and grow. A great line I heard once is:

I see a OSS project as competitive when somebody quits their day job and tries to make a business around it.

What effect does picking a license have on a company's ability to make money with open source?

License choice is a huge challenge for a project maintainer. What seems like a quick or simple choice can turn into a long term liability. Like any commercial license, the devil is in the fine print. You can go with a very permissive license such as the Apache License, or something more restrictive such as the GNU Public License (GPL), or one of it's variants like AGPL.

If you plan on doing business with other businesses, you may want to reconsider the use of GPL. Use of the GPL can be seen as a liability in some corporations and can limit adoption. Whereas if you pick a very permissive license like Apache, you lose a lot of control of your project to anyone that wants to fork it and take it in a different direction.

I prefer the more permissive licensing as I believe it offers the most flexibility for adoption and therefore less commercial issues.

Can smaller shops (say, of one or two people) apply the advice you'll be offering in your talk to their work?

Datastax, the company I work for, started with two guys looking to support Apache Cassandra. That business has grown and done well.

There is a path from very small to large public company. It's way more than just making a tarball of the source available from a website. Small shops have a huge advantage in that regard when starting as OSS first. I will have something for those companies looking to open source something previously closed source as well. I can say that is probably the most difficult since there is so much commercial inertia.

Open source to make caring for your health feel wonderful (interview with Juhan Sonin, Involution Studios)

Jen Wike (originally published July 2014)

Juhan Sonin wants to influence the world from protein, to policy, to pixel. And, he believes the only way to do that is with open source principles guiding the way.

Juhan is the Creative Director at Involution Studios, a design firm educating and empowering people to feel wonderful by creating, developing, and licensing their work for the public.

"We believe that any taxpayer funded effort should be made available, in its entirety, to be reused, modified, and updated by any citizen or business, hence the open source license. It should be a U.S. standard practice for contracted work."

One of their works is hGraph, a visual representation of your health status, designed to help you alter individual factors to improve it.

"Two companies are using hGraph in their clinical software. One offers corporate clinic-as-a-services (less than 1,000-person corporate campuses have clinics to serve employees), and an international pharmacy is launching hGraph to drive their next generation clinician and patient experience."

You describe the coming wave of healthcare to be based on sensors that are tailored to our genome, non-invasive, and visible. This is where design comes in. How do you design applications that "feel wonderful"?

I always picture the orgasmatron from Woody Allen's movie, Sleeper (1973), which was set in the year 2173. This fictional device, a cylinder large enough to contain one or two people, rapidly induced orgasms. A character would walk in, have a blast, and walk out only seconds later. That's how I want healthcare delivered. It needs to be fun. I want to think more about life and a lot less about "health" and "security."

Think about the current line-up of consumer health devices. They require massive mental and physical overhead to engage with, from remembering to wear it to switching it to night-time mode to taking it off during showers. They all suffer from the same issue: they're a branch of devices called the "non-forgettables." By contrast, in-the-background, automatic health sensing lets us focus our consciousness on the dream life we want to live. The act of not thinking about my health and just enjoying life is one major way to make a service feel wonderful.

And that's really what our work is all about: trying to create things that feel truly wonderful.

How do open source principles guide your design process? How do they hep you lead as Creative Director of Involution Studios?

Radical transparency is one of our studio's core beliefs.

For us, radical transparency means:

	
open financials, where every staff has access to the corporate financial data

	
open decision making, involving everyone as equals and participation in the studio's future via everyday design, business, and technical decisions

	
personal responsibility and integrity based on a public code of ethics that drives our behavior... through speaking the truth to ourselves and clients, learning together, and ultimately producing real, helpful, and beautiful solutions for Spaceship Earth

Our open design mission is that our designs (patterns, code, scripts, graphics, ideas, documents) will be available to any designer, to any engineer, to any world citizen, to use and modify without restriction.

Our code of ethics is public as well. We're not perfect in every open source tenet, but we're making progress.

What are the Health Axioms?

I had a cholesterol check a day after eating a lot of salami—this is not a joke, by the way—and it was like 350! Now thankfully that was not my real cholesterol but it got me interested in my health. So much of this is digital and tracking-related, but so much of it is old-fashioned, analog stuff. I think that is where a bigger impact can be made and was how I wanted to craft a solution. The Health Axioms are about daily care and attention to health in a distinctly physical format.

It's about sitting down at the dinner table on Sunday nights, hopefully several nights a week, eating green peas, kale chips, and maybe fish or tofu (instead of beef). It's how our mothers or grandmothers used to remind us about saying please and thank you, going outside to play, eating your veggies, and grabbing fresh herbs from the garden. But it's also about reminding people about modern realities: put on your damn rubber! Don't be stupid out there.

That's where the Health Axioms fit in. It's a deck of cards that helps people cut through the clutter and focus on clear, actionable advice that will impact your health and how we interact within the healthcare system. Each card has a single idea, one specific behavior we should concentrate on. The Health Axioms are graphic examples, using a visual story to communicate something important about your well-being.

Someone can buy and download or share, remix, and reuse Health Axioms. How are people consuming Health Axioms most often?

Doctors are using them to discuss key issues with patients and handing them out as daily reminders post-checkup. Three different clinical practices are currently leveraging them as part of everyday exams. Wall art is another outlet, where clinics are hanging large Health Axioms on the walls to inform discussions and remind patients and doctors alike of the 4-6 healthy behaviors we should engage in, such as:

	
Get More Sleep

	
Exercise is Medicine

	
Food is Medicine

	
Stop Smoking

	
Examine Yourself

Next up is environmental graphics—imagine bigger-than-life-sized murals on hospital walls. We're working on some great prototypes with a Boston clinic right now.

Do you think they have reached more people because they are licensed as Creative Commons? How has this affected your profits?

We make our ideas free. The Health Axioms are openly published on Flickr, GitHub, various forums, and our website. The CCv3 Attribution license has allowed our previous designs, photos, and documents to be viewed by millions and used on thousands of sites, which in turn has driven more business to the studio. We're just five months into the Health Axioms' life. It usually takes a year of getting the word out and community nurturing to begin to see results. However, we're already seeing the engaged patient community lock onto them. Stanford Medicine X is highlighting the content. National Public Radio ran a story about them. It is wonderful to see but we have a long way to go.

Tell us about licensing the book, Inspired EHRs: Designing for Clinicians, under Apache 2.0?

It is a graphic whitepaper on designing user interfaces for electronic health records (EHRs), written for anyone who develops and implements health IT software, with a focus on those EHR vendor teams that want to dive more into human factors and design. By prototyping UI ideas, the interactive publication allows engineers and designers to snarf the code via GitHub, inject their own clinical data, and validate the ideas with their own teams and stakeholders, including clinicians and patients.

Completed as of July 1, 2014, the book is a global resource paid for by the non-profit California Healthcare Foundation, as well as the taxpayer funded Office of the National Coordinator for Health IT (ONC). Our position is that any taxpayer funded effort should be made available, in its entirety, to be reused, modified, and updated by any citizen or business, hence the open source license. It should be a U.S. standard practice for contracted work.

What is the big mission at Involution Studios? How did you choose open source as a method for creating, developing, and licensing your work?

As designers, we want our fingers, hands, and eyes on all the moving parts of a project, no matter how small or big. We want to influence the world from protein, to policy, to pixels. That means expanding our skills and knowledge to have impact at levels of science and society as well as design and engineering. That degree of immersion into problem solving and the holistic context of our clients enables us to make extraordinary impact, at a level that transcends the important issues of our clients but get into issues of meaning and the longer future.

And at some point in our careers, designers and engineers need to be involved in policy… in the crafting, in the designing, or development of guidelines or laws that drive how we as a people, operate together (or not). Some efforts are grassroots, like the Inspired EHR Guide, which starts with just a few people. This is attacking at the fringe, from the outside in. Data standards and policy-making and advising mafia (like HL7 or HIMSS) need good engineers and designers to participate. This is not super-sexy work. While the pace of sculpting governance is enormously slow (these kind of efforts take years and are often frustrating experiences), the ultimate outcome and impact can be long-lasting. And making this kind of change is why we're in business.

CloudBees programmer to give talk on how to develop a massively scalable HTTP server (interview with Garrett Smith, CloudBees)

Robin Muilwijk (originally published July 2014)

Garrett Smith from CloudBees has been in software engineering for over twenty years. He got introduced to the Erlang programming language while evaluating CouchDB. Along with Visual Basic, Visual C++, and Erlang, Garrett also learned about Python.

It was Python that introduced him to the world of open source, and from there, as he learned more about open source and the dynamics of community-based development, he never looked back.

Garrett will be talking at OSCON 2014 about Erlang and building a massively scalable web server. You don't need indepth knowledge of Erlang to get his talk about, what he says are, "some pretty amazing things about building software in general."

Please tell us a bit about your background and career. When did you first cross paths with open source?

I've been writing software professionally for over twenty years and got my start in the Microsoft Windows 3.x era of programming, so Visual Basic and Visual C++ and even some VBA with Excel and Access. It sounds pedestrian now, but it was very exciting at the time. Businesses were spending money to build lots of software that ran on cheap PCs. Programmers were in short supply and it was a wide open arena to learn practical programming skills—and get money to buy beer.

When Java made its debut in 1994 out, I made a shift there. Apart from its affinity with the Web, Java's cross platform support offered a path out of the Microsoft hegemony. I bought the GoF "Design Patterns" and made it my goal to use every pattern at least once in a project I was leading. It was like a cocaine bender—an initial feeling of euphoria followed by a crash that left me alone, bleeding in the gutter without friends and sense that I had let the Universe down, morally.

My experience with Java was an exercise in problem creation, not problem solving.

After seeing what I had done—and indeed what the Java culture encourages—I tried my hand at Python. Python embraces multiple platforms in a pragmatic and direct way and loses static typing. The whitespace thing didn't bother me, and I enjoyed not having to think in multiple layers of abstraction. I also met amazing people in the Python community. This introduced me to "open source" (a loaded term then, less so today) and the dynamic of community-based software development. I never looked back.

I had been writing proprietary commercial software for about ten years at that point and sensed that industry was decaying and would eventually die. It might take a long time, but the future was not in selling software licenses, it was somewhere else. The problem, as I saw it, was that commercial software vendors were compelled to ship features to drive sales. The features they built, in many cases, were drummed up, internally, by product managers that needed something to announce and market. The features often had nothing to do with real user pain and ended up making the software worse. This cycle would continue, on and on, until the software ended up bloated, awful to use, and expensive to support.

When you're not charging licensing fees you can focus on what is needed by users. Adoption is the key to success. Rather than shipping quarterly releases with speculative features that you hope justify your customer's subscription plans, you can ship routinely with small improvements that are vetted with real world use. It's a radically different program and so clearly superior, I don't see commercial software surviving it. You'll continue to see pockets of niche, vertical applications that remain successfully closed, but in time I think these will succumb to open processes.

In an attempt to find a business model that could fit harmoniously into the open source revolution, I shifted my career to enterprise software services, but quickly returned to software product development. I'm currently working in the "cloud" space, which is, in my estimation, a way to add value to data center hosting services (fundamentally selling electrical power, cooling, and backbone access). Whatever you call it (IaaS, PaaS, SaaS, and so on) building products and the services that run "out there somewhere" is a long running business model that programmers can safely commit to.

Erlang goes a long way back to 1986 and the Ericsson Computer Science Laboratory. When did you first learn about it? And what made you start using it?

I first learned about Erlang when evaluating CouchDB for a project. I had to install this language called "Erlang," and I had never heard of it. Weird, how often does that happen? So I started playing around with it and bought Joe Armstrong's "Programming Erlang" and was intrigued. I had often discussed with friends the short coming of languages that bolted distributed programming concepts on as an after thought. Here was a language that had distribution built into the core!

I kicked the tires, built the samples, and left it alone for a couple years. I then ran into a problem that I just could not solve using the in-house tools at hand—Python and Java. It was a fine grained monitoring problem that involved tens of thousands of independent monitoring states. The posix-thread based models were falling over in time with mysterious hangs and process crashes. As a monitoring program, this had to run reliably and had to deal with this hard concurrency problem. I knew we had a long haul in getting things right with Python or Java, and that opened up the option of using a new language like Erlang.

I took the hit to rewrite the program in Erlang. It took less time than I expected, and it worked extremely well. That experience convinced me of the merits of using Erlang—both as a superior model for handing concurrency (independent processes with message passing)—and also, surprisingly, as a functional language.

In using a functional language, I discovered that my programs were more coherent (i.e. easier to understand and think about) and more stable (fewer bugs). It prompted my gradual replacement of Python and Java for backend, long running programs. They were easier to write and easier to maintain.

This was a formative experience. Erlang is hands down my tool of choice for writing long running, unattended programs. I'm also now a strong proponent of functional languages in general.

What does a day at CloudBees look like for you?

We always look at open source software first at CloudBees. CloudBees is the company behind Jenkins—a hugely successful open source project. We realize that the quality of software reflects the quality of the community behind it. Notice I said "community" and not "development team." In open source, there are certainly core contributors, but open source projects are living organisms that are continually shifting and evolving. A great open source project, like Jenkins, attracts brilliant contributors. Those contributors make the software better. Without community a technology will die. We understand that and look for tools and technology that are attracting and nurturing talented humans.

Internally, we use open source patterns of development. Individuals are encouraged to contribute to internal projects, submit pull requests, and in general solve problems directly by writing code. CloudBees loves code—we are skeptical of designs and plans. Designs and plans are great starters, but the programmers at CloudBees respect working code more than anything. We're all very much sold on the open source way of building software. There's no question that it results in higher quality, better fitting technology. It goes faster as well.

Your session at OSCON will have a clear goal, to teach the audience to develop a massively scalable HTTP server and learn all about Erlang. What type of developers should attend?

People are interested in Erlang and the tutorial is a great way to see how working software is built in the language. The tutorial slot is of course too short to walk away with deep knowledge, but seeing how stuff is built in a live context where you can ask questions and interact with the teacher is invaluable. If you're curious about Erlang, come to this session—it doesn't matter what your specialty is. The focus will be on the Tao of Erlang—how it works and why it's important.

I absolutely love to teach. Really, I think everyone does—it's about sharing the things you're passionate about and who doesn't do this naturally? I try hard to keep the big picture front-and-center. E.g. knowing what pattern matching is in Erlang is one thing. But knowing how pattern matching changes the way you program and improves software quality—that is powerful. If I can get some brain bits to flip—get some "ahhh, that's really cool" moments with folks, I'll have my endorphin release for the day.

Any final thoughts you would like to share? A sneak preview into your talk?

Anyone attended either the session talk or the tutorial should be prepared to learn some pretty amazing things about building software in general. Erlang is a very unique language and the topics that differentiate it are important to programmers. Process isolation, system orientation, fault detection and recovery, distribution—these are central to Erlang's identify. That's not true of any other programming language that I'm aware of. Ironically, everyone's talking about these topics *outside* the language tier—operating systems, VMs, containers, cloud, etc. Erlang had this 20 years ago inside the language. Even if you don't pick up Erlang, knowing how it approaches the programming model will be useful in thinking about programs in other languages.

Of course, I hope people pick up Erlang as well.

DefCore brings a definition to OpenStack (interview with Rob Hirschfeld, Openstack)

Jason Baker (originally published July 2014)

What's in a name? Quite a bit, actually. To ensure compatibility between products sharing the same name, it's important that users can expect a core set of features to be consistent across different distributions. This is especially true with large projects like OpenStack which are made up of many interlocking components.

Rob Hirschfeld is working to solve this problem. He serves as co-chair of the OpenStack DefCore committee, which is leading the effort to create a firm definition to OpenStack by defining the capabilities, code, and must-pass tests for all OpenStack products. Hirschfeld also holds one of the elected community positions on the OpenStack Foundation Board of Directors and is Distinguished Cloud Architect at Dell, where he works with large-scale integrated cloud systems.

I asked Hirschfeld to share a little bit about OpenStack, the DefCore effort, and his upcoming talk at OSCON in this interview.

Without giving away too much, what are you discussing at OSCON? What drove the need for DefCore?

I'm going to walk through the impact of the OpenStack DefCore process in real terms for users and operators. I'll talk about how the process works and how we hope it will make OpenStack users' lives better. Our goal is to take steps towards interoperability between clouds.

DefCore grew out of a need to answer hard and high stakes questions around OpenStack. Questions like "is Swift required?" and "which parts of OpenStack do I have to ship?" have very serious implications for the OpenStack ecosystem.

It was impossible to reach consensus about these questions in regular board meetings so DefCore stepped back to base principles. We've been building up a process that helps us make decisions in a transparent way. That's very important in an open source community because contributors and users want ground rules for engagement.

It seems like there has been a lot of discussion over the OpenStack listservs over what DefCore is and what it isn't. What's your definition?

First, DefCore applies only to commercial uses of the OpenStack name. There are different rules for the integrated code base and community activity. That's the place of most confusion.

Basically, DefCore establishes the required minimum feature set for OpenStack products.

The longer version includes that it's a board managed process that's designed to be very transparent and objective. The long term objective is to ensure that OpenStack clouds are interoperable in a measurable way and that we also encourage our vendor ecosystem to keep participating in upstream development and creation of tests.

A final important component of DefCore is that we are defending the OpenStack brand. While we want a vibrant ecosystem of vendors, we must first have a community that knows what OpenStack is and trusts that companies using our brand comply with a meaningful baseline.

Are there other open source projects out there using "designated sections" of code to define their product, or is this concept unique to OpenStack? What lessons do you think can be learned from other projects' control (or lack thereof) of what must be included to retain the use of the project's name?

I'm not aware of other projects using those exact words. We picked up 'designated sections' because the community felt that 'plug-ins' and 'modules' were too limited and generic. I think the term can be confusing, but it was the best we found.

If you consider designated sections to be plug-ins or modules, then there are other projects with similar concepts. Many successful open source projects (Eclipse, Linux, Samba) are functionally frameworks that have very robust extensibility. These projects encourage people to use their code base creatively and then give back some (not all) of their lessons learned in the form of code contributes. If the scope returning value to upstream is too broad then sharing back can become onerous and forking ensues.

All projects must work to find the right balance between collaborative areas (which have community overhead to join) and independent modules (which allow small teams to move quickly). From that perspective, I think the concept is very aligned with good engineering design principles.

The key goal is to help the technical and vendor communities know where it's safe to offer alternatives and where they are expected to work in the upstream. In my opinion, designated sections foster innovation because they allow people to try new ideas and to target specialized use cases without having to fight about which parts get upstreamed.

What is it like to serve as a community elected OpenStack board member? Are there interests you hope to serve that are difference from the corporate board spots, or is that distinction even noticeable in practice?

It's been like trying to row a dragon boat down class III rapids. There are a lot of people with oars in the water but we're neither all rowing together nor able to fight the current. I do think the community members represent different interests than the sponsored seats but I also think the TC/board seats are different too. Each board member brings a distinct perspective based on their experience and interests. While those perspectives are shaped by their employment, I'm very happy to say that I do not see their corporate affiliation as a factor in their actions or decisions. I can think of specific cases where I've seen the opposite: board members have acted outside of their affiliation.

When you look back at how OpenStack has grown and developed over the past four years, what has been your biggest surprise?

Honestly, I'm surprised about how many wheels we've had to re-invent. I don't know if it's cultural or truly a need created by the size and scope of the project, but it seems like we've had to (re)create things that we could have leveraged.

What are you most excited about for the "K" release of OpenStack?

The addition of platform services like database as a Service, DNS as a Service, Firewall as a Service. I think these IaaS "adjacent" services are essential to completing the cloud infrastructure story.

Any final thoughts?

In DefCore, we've moved slowly and deliberately to ensure people have a chance to participate. We've also pushed some problems into the future so that we could resolve the central issues first. We need to community to speak up (either for or against) in order for us to accelerate: silence means we must pause for more input.

Jérôme Petazzoni on the breathtaking growth of Docker (interview with Jérôme Petazzoni, Docker)

Richard Morrell (originally published July 2014)

For those of us veterans in the open source software (OSS) community, certain technologies come along in our lifetime that revolutionise how we consume and manage our technology utilisation. During the early 2000s the concept of high availiability (HA) and clustering allowed Linux to really stack up in the datacentre.

In the same way that power management and virtualisation has allowed us to get maximum engineering benefit from our server utilisation, the problem of how to really solve first world problems in virtualisation has remained prevalent. Docker's open sourcing in 2013 can really align itself with these pivotal moments in the evolution of open source—providing the extensible building blocks allowing us as engineers and architects to extend distributed platforms like never before. At the same time, managing and securing the underlying technology to provide strength in depth while keeping in mind Dan Walsh's mantra: Containers do not contain.

Jérôme Petazzoni is talking at OSCON 2014, and I had the opportunity to pose him some questions that I thought would make interesting reading to the Opensource.com audience. Thanks to Jérôme for taking the time to answer them, and I urge as many of you as possible to attend both his and all the other keynotes and breakout sessions throughout OSCON.

The transition from DotCloud to Docker, and the breathtaking growth curve to the release of 1.0, has seen Docker really demonstrate how you can take good engineering, great code and deliver it. Openly. You've worked hard with the release of 1.0 to get best practices in place to ensure the code you put out was stable. Many projects go through a curve where they move from a release tree to all of a sudden having to start thinking about development methodologies and testing environments. How have you found this in the short evolution that Docker has gone through to get to 1.0? What have you learnt from this that will help you in future releases?

You said it: "testing environments." We didn’t wait for Docker 1.0 to have testing at the core of the development process! The Docker Engine had unit tests very early (as early as the 0.1.0 version in March 2013!), and integration tests followed shortly. Those tests were essential to the overall quality of the project. One important milestone was the ability to run Docker within Docker, which simplified QA by leveling the environment in which we test Docker. That was in Docker 0.6, in August 2013—almost one year ago. That shows how much we care about testing and repeatability.

It doesn’t mean that the testing environment is perfect and won’t be changed, ever. We want to expand the test matrix, so that every single code change gets to run on multiple physical and virtual machines, on a variety of host distributions, using all the combinations of runtime options of the Docker Engine. That’s a significant endeavor, but a necessary one. It fits to the evolutionary curve of Docker, going from being “mostly Ubuntu only” to the ubiquitous platform that it became today.

The announcement of the Repository Program [note: it's "Official Repository"] really added massive value and a vote of confidence in how partners can work with you how did you ensure when building the program that contributing partners could engage and maintain quality control over their contributions openly?

In order to participate in the Official Repository program, partners had to host their source code in a public GitHub repository with the associated Dockerfile. This allowed the Docker team to review ahead of declaring it “Official.” In addition, participating partners must provide instructions on how users can submit pull requests to continuously improve the quality of the Official Repositories in the program.

Over the last decade plus the community and the supporting companies involved in open source have shown enterprise the value of adopting Linux as a mainstream workload for applications and engineering solutions. Docker is now a staple part of a seed change in how we take next steps in service and application provision, probably more so than at any time in recent history. Do you think that enough enterprises understand the difference between the more lightweight and agile container paradigm shift Docker brings compared to say heavyweight (and expensive) technologies such as VMWare?

We definitely see an increasing number of enterprises understanding this shift. Don’t get me wrong: they are not abandoning virtual machines to replace them with containers. Both approaches (heavyweight and lightweight virtualizations) are complementary. Embracing containers can be a huge paradigm shift, but it doesn’t have to be. When discussing Docker best practices with developers and operation teams, we often present two approaches side by side: evolutionary and revolutionary. The former requires minor changes to existing processes, yet provides significant improvements; the latter, as the name implies, is more drastic—both in implementation cost (for existing platforms) and realized savings. Our users and customers appreciate both possibilities and pick the one that suits best their requirements.

Docker has been very open and responsible with making sure that you provide your users with complete transparency around security concepts in the Docker architecture. Do you see an opportunity for having a "Super Docker" container that allows you to enforce mandatory controls in future releases reducing your threat attack surface and making the most of the advantages of namespaces and also limiting (and auditing) access to a control socket?

It’s a possibility. I personally believe that security is not a binary process. There is no single feature that will grant you the absolute protection. You have to deploy multiple additional layers: security modules (like SELinux or AppArmor), kernel isolation features (like the user namespace), UNIX common best practices (like “don’t run stuff as root when it doesn’t need it”), and of course stay on top of the security advisories for the libraries and frameworks that you are using in your application components.

A new “Super Docker” container would probably not add a lot of security; however, it could be used to group multiple related containers in the same security context, if they need advanced or efficient ways to share files or data.

One of the reasons I personally am excited about Docker is not just the opportunities it affords us in our ability to offer stable services to customers and to build the platforms we want but for taking Linux securely to new areas we already "tickle" but where Solaris and AIX still remain entrenched. The use of Linux in the classified and government spaces is tied down Common Criteria to determine Evaluation Assurance Levels. Docker is a game changer. It actually is one of the most prominent and important adolescence changes in the Linux story. Docker actually has an opportunity to tear up the rule book. Are governments aware of the opportunity Docker gives them and if not is this something that you're going to engage in the next steps of Docker as an organisation?

The government market is very aware of Docker and has already reached out to us. We have been in touch with government organizations, including those within the intelligence community.

You personally come from a service provider background having helped organisations with hosting and private cloud needs with your own company Enix, you therefore know that many managed hosting companies now looking to cloud already built clouds people don't want to consume services on—because they had to have a cloud. Especially those companies have already spent a lot of their budgets on proprietary technologies to help them get to cloud. Do you see many of them now knocking on your door realising that customers have a need to look to Docker?

Many channel partners recognize the portability benefits of Docker and are actively developing practices based on Docker to help their customers abstract away any technological dependencies on any specific service provider.

Their past investments in private clouds are still relevant. If they have deployed (for instance) OpenStack, they can already leverage on the multiple integrations available between OpenStack and Docker, through Nova, Heat, and soon Solum. Even if they built their own in-house IAAS solution, they can still deploy Docker on top of that to use it for themselves or offer it to their customers. Of course, native approaches (i.e. selling “Docker-as-a-Service”) will require additional integration work, but Docker doesn’t reduce the value of their platform: it complements it and unlocks new revenue channels.

Moving forward what are your hopes and ambitions for Docker, not taking into account your door being knocked by Solomon or Ben for new features that always tend to throw the whole development environment?

The Docker platform offers a new approach for IT teams to build, ship, and run distributed apps. Our ambition is to grow a great, sustainable business that nurtures an active community ecosystem and provides great solutions to customers who are moving to this new world of micro-services.

On a mission to digitize and share the world’s visual history (interview with Thomas Smith, Project Gado)

Robin Muilwijk (originally published July 2014)

Thomas Smith will be speaking at OSCON 2014 about Project Gado.

Project Gado has created an open source robotic scanner that small archives can use to digitize their photographic collections. Gado means inheritance in the West African language Hausa, reflecting the project’s historical preservation goal.

He has always wanted to be an inventor, and I spoke with him about what it's like to work as a technology consultant in the San Francisco Bay Area. In this interview, Thomas tells me more about how Project Gado came to life, how the Gado community evolved, and how open source is applied to everything.

Tell us about yourself and your background. Did you always want to become an inventor?

Yes! When I was little and people asked what I wanted to be when I grew up, I always said "inventor." I got my first power drill at three and my first soldering iron at ten, and I was always excited to take something apart and see how it worked.

Today, I work as an entrepreneur and technology consultant in the San Francisco Bay Area. I have degrees from Johns Hopkins University in two different fields: Cognitive Science and Cultural Anthropology. I think this background helps me a lot in my work. It allows me to think in a formal way about technical challenges, but also to ground my solutions in a practical understanding of communities and their needs.

Can you share some of the moment, and especially the motivation at that time, of where the idea behind Project Gado came from? What sparked the idea and what vision did you have?

I was working on an oral history project in East Baltimore. One day, I tagged along with a colleague to visit the Afro American Newspapers in Baltimore, looking for photos of the community I was studying. What I found was an archive of 1.5 million historical photos dating back to 1892. In included never-published photos of everyone from Martin Luther King Jr. to Eleanor Roosevelt.

The photos were largely hidden, because of the high cost of doing hand-scanning, editing the scans, and adding metadata. In the whole history of the paper, they had only digitized about 5,000 photos. I realized that if I could use technology to radically automate digitization and photo processing, millions of photos from organizations like the Afro could be available to the historical record.

Today, we’ve scanned 125,000 images at the Afro. Using technologies including our open source Gado 2 robot, we can digitize archives at little to no upfront cost, and we can even help archives monetize their photos through licensing.

It is inspiring to see how collaboration between Project Gado and other organisations picked up. Can you tell us more about this process and the evolution of the ecosystem around Project Gado?

Like many open source projects, we started out slowly. We released our Gado 2 robot’s design files and code in 2011, and for about two years, nothing happened. In 2013, we got more active and released a Gado 2 kit to ten early adopters. That really set things in motion. We ended up with user groups in California, Boston, and Baltimore, as well as our flagship group in Finland.

One of the coolest things about open source is that once you seed the community with an initial burst of activity, it reaches a point where organic growth takes over. At this point, we don’t have to do much at all the maintain the community.

Your talk at OSCON 2014 will show how Project Gado is an excellent example of how an open source community can grow, collaborate, and innovate together. Can you share with us, as a sneak preview to your talk, what other open source projects can learn from Project Gado?

One of the major lessons is that you have to actively work to promote your project and get the community started. You can’t assume that if you have a great idea, people will show up to collaborate on it. We released kits, but we also spoke at conferences, built a presence on the web, and went through traditional media. Our Finland group originally read about Project Gado in a newspaper article.

If you were to look three to five years ahead, what future do you see for Project Gado? Any other final thoughts you would like to share?

Our mission is to digitize and share the world’s visual history. We’re developed the technologies and relationships to make that possible. In five years, I’d like to see us doing it at a much grander scale. There are hundreds of millions of analog photographs out there, and I’d like to make all of them available to the world.

The challenges of Open edX's large and complex codebase (interview with David Baumgold, edX)

Travis Kepley (originally published July 2014)

One of the fundamental tenets of the open source movement is the freely available access of knowledge. There has been a growing scene of educators, institutions, and organizations that see open access to knowledge as not being limited to that of source code. For several groups and universities this has been a focal point for the future of worldwide education.

edX has been making a name for themselves by not only creating a fantastic partnership of like-minded educators and institutions, but by also open sourcing the platform on which edX is built.

As part of Opensource.com's interview series for OSCON 2014, I had a chance to speak with David Baumgold—a software engineer at edX—about education, open source, and what lies in store for OSCON 2014 attendees who are interested in open access to education. Be sure to catch David and James' talk on Open edX at OSCON this year!

I have been a big fan of the open course initiative since the beginning. I notice that there are several foundations working with you including one near to our hearts, The Linux Foundation. Can you give me a little detail on how The Linux Foundation became involved with the edX project?

I don’t know the details of that partnership, but it seems to be exclusively focused around providing the Linux course on edx.org, as opposed to the Linux Foundation actually contributing any code to the Open edX codebase. Since I’m focused on integrating code contributions to our codebase, I don’t hear very much about the other initiatives going on with the destination website. I do know that the Linux course has been an extremely popular course, and lots of people seem excited to learn more about software and open source!

One of the big tenets of the open source philosophy is that information should be available and not a guarded secret. This is clearly in line with edX's goals. Can you give us some examples of where you are able to pull from the open source community to expose knowledge to the masses?

The biggest success I can point to is our XBlock architecture. XBlock is an extensible system that allows a developer to define a component of a webpage—such as a video player, a Javascript-powered interactive, a view of the discussion forum, and so on—and reuse that component within a course and across courses. We can’t possibly build all of the amazing learning tools that every possible course will want to use, but XBlock allows course authors to build their own tools and share them with others in the learning community. Recently, a team at MIT that had no prior contact with the edX development teams built their own XBlock, and announced it on the community mailing list. The response from other institutions and organizations in the community has been overwhelmingly positive: there’s clearly a big demand for this sort of component that edX didn’t even know about. But by providing the tools for the community, open source allows people to scratch their own itch, and help everyone learn more effectively.

What would you say is the biggest challenge for open access to education? What are some small changes that could make a big difference for edX to achieve its goals?

I think the biggest challenge is the matter of scale. We know how to provide quality education in small groups of people, but the fundamental challenge that edX is facing is how to provide quality education to massive groups of people. The Internet provides tremendous opportunity to connect people in unprecedented ways, and we’re finding that we can all learn a lot from each other—the traditional lecture-style classroom may end up taking a back seat to a more collaborative, networked environment, where students learn more from their peers than from a professor. We are just beginning to learn more about how education happens on a massive scale, and the challenge—and the opportunity—is in figuring out what works in this uncharted world.

Another core tenet of successful open projects is a strong and vocal community. Can you tell us a bit about the edX community of users and contributors?

We have a large community already, and they’re certainly vocal about what they want and need! I would say that the Open edX community can be divided up into three categories.

We have the community members that represent universities with courses running on edx.org, or other universities that have strong ties to the company. These community members often share information with each other about how to use edX effectively, whether its answering questions, sharing code contributions, or discussing theories of pedagogy.

Next, we have community members that have their own Open edX installations, and want make it easier to keep their code up to date, learn more about how to run their servers effectively, and hear what edX is planning on building next. These people also report bugs in our codebase, and sometimes help get them fixed as well.

Finally, there are the people who are just dipping their toes in with the project: people who have trouble getting it installed, people who want to know if it supports a certain feature, people who don’t know where to begin. The Open edX codebase is large and complex, and there’s only so much we can do to make it simpler! For these people, we’re trying to learn how to give them the best help we can, and how to help them help each other. The more people there are using Open edX, the more potential contributors there are making things better for everyone!

In a recent article in the Boston Globe, it was stated the the vast majority of students were from outside of the US where edX is based. I would imagine this is pretty exciting given the global participation you have from universities overseas. What are your thoughts on the numbers from that article? Some numbers are really surprising!

Education is important around the world, so it makes sense that we would have a large global community—after all, there are more people in the world living outside of the US than there are living in the US. However, it’s still amazing that we have this kind of reach! Apparently, the US education system is well-known around the world.

We’ve also seen impacts of this phenomenon in the Open edX open source project. It turns out that our very first contributions from our open source community were focused around internationalization, so that users could use the website in their native language. Our community really pushed us forward on this front—and as I said, they can be quite vocal about what they need! Our volunteer translators are translating more and more of our platform into other languages, and there’s always lots of celebrating at the edX offices when we release another language on the edx.org destination website.

Is there anything in particular you'd like to share with us about your talk for OSCON 2014 this year?

This is going to be my very first OSCON, and I’m very excited. I have no idea what’s in store, but looking at the schedule of talks (and the sheer number of them!) I’m sure it’s going to be an amazing conference.

Getting kids interested in programming, robotics, and engineering (interview with Arun Gupta, Red Hat)

Jason Baker (originally published July 2014)

It's easy to get kids interested in technology when the technology is fun! And the options out there for fun outlets for kids to learn is growing every day. From building robots to programming games to building your own electronics, the line between play and learning is steadily blurring, and what's more, many of these platforms are built on open source.

Meet Arun Gupta. He is Director of Developer Advocacy at Red Hat, where he focuses on JBoss Middleware. But when Gupta's not at work, one of his passions is the Devoxx4Kids program (he founded the United States chapter). Gupta will be speaking next week at OSCON, where he'll share his experience with Devoxx4Kids and provide some pointers for other parents wishing to get their kids involved.

In this interview, we learned what Devoxx4Kids is all about, the children it reaches, and how you can get started with a chapter in your area.

Tell us about Devoxx4Kids! What is it, and how did you first get involved?

Devoxx4Kids is a global organization with a goal to introduce school kids to programming, robotics and engineering in a fun way. This is achieved by organizing sessions where children can develop computer games, program robots and also have an introduction to electronics. Different chapters around the world have conducted workshops on Scratch, Greenfoot, Alice, Minecraft modding, Raspberry Pi, Arduino, Python, NAO robots, and a variety of other topics.

Devoxx is a professional developer conference based out of Europe. The founders of the conference tried to teach their kids on what they do for living and realized most of the material is in English, and not in their local language. That led to the birth of Devoxx4Kids. I've been speaking at the conference for a few years now and have delivered kids workshops for over a year now. I know the organizers for a few years and so it was very logical for me to build upon the effort and bring it to the USA.

I founded the US chapter and its a non-profit and 501(c)(3) organization. A team helps me drive the Bay Area chapter and we've conducted several workshops here. You can take a look at them at our website. You can find more about the organization there.

It sounds like there are projects for a wide range of ages. How young does Devoxx4Kids reach?

Our workshops are targeted at kids from elementary to high school. Each workshop provides the recommended age and we've seen these are generally well honored by the attendees. Each workshop generally has a few volunteers to help the attendees move along.

Each country has a different way to reach out to local attendees. Bay Area chapter reaches out using Meetup. Belgium, Holland, UK, and other countries use Eventbrite. And then these workshops are promoted using usual social media channels.

Devoxx4Kids sessions have been delivered at different technology conferences around the world as well. We also have a free video channel that allows us to expand our reach beyond the physical workshops.

So far, we've conducted about 120 workshops around the world with over 2,000 kids, and 30% of them are girls. We are very proud of that and certainly seeing interests in opening chapters in different parts of world. Take a look at our website if you are interested in opening a chapter.

We encourage parents to let the kids explore on their own as kids become a lot more independent, apply their own wonderful mind to solve problems, and also helps a lot in morale boosting. Parents do stay with the kids in some workshops though and help kids catch up and move along with rest of the attendees. This is especially true if younger kids are participating in a workshop which has a lot more elder kids.

Most of the times it's been an enriching experience, both for the attendees and us as the instructors. Every workshop is a new learning.

What is the most kid-created, exciting project you've encountered so far?

Each workshop has a different level of excitement and the sparkle in attendees' eyes is priceless. However there are certain workshops where the excitement level is high. Minecraft modding definitely stands out very prominently. We've seen some really creative mods from first time Minecrafters in the modding class. That is very encouraging!

Scratch workshop is a big hit for kids in elementary/middle school. Their interaction with Leapmotion and ability to control sprites in Scratch using their hands is very exciting for them.

You're giving another talk on Java EE 7. How can we bridge the gap so that skills learned in Devoxx4Kids continue into future careers as programmers or other related fields?

Our goal is to expose technology to kids at an early age and more importantly in a fun way. Hopefully this will motivate them to stay engaged as they grow. In some of our workshops, we also make parents from hi-tech industry talk about their successful careers. This allows the kids to connect the dots from what they are doing to where they can be, hopefully. We only try to motivate kids and show them options when they are raw. What they ultimately choose in their career, could be completely different. But I'd like to say "If not us, then who. If not now, then when."

Without giving too much away, what are some of the tips and best practices you plan to discuss for workshop organizing?

If you are a newbie runner, then there are tons of questions. How much distance should I run? What should I eat? How many days/week I should train? What kind of cross-train ? Shoes, GPS, protein/fat/carbs ratio. And the list is endless.

Similarly organizing workshop for the first time could be overwhelming but we've delivered several of them all around the world. This particular session will be answering questions like what does it take to run a workshop, what topic would be relevant, how many attendees should be invited, how to get volunteers, where is the training material, t-shirts, swag, sponsors, and similar questions.

Is there anything else you'd like do add?

I'm personally thankful to O'Reilly for giving us an opportunity to talk about Devoxx4Kids at OSCON. We are also organizing OSCON Kids Day on the Sunday before OSCON and so motivating more kids.

Do check out our website and let us know if you are interested in opening a chapter.

About This Series

The Open Voices eBook series highlights ways open source tools and open source values can change the world. Read more at http://opensource.com/resources/ebooks.

[image: Writer2ePub]

Created with Writer2ePub

by Luca Calcinai

OEBPS/images/w2e.jpg
Writer

OEBPS/images/oscon-katiemiller.jpg

