
	An open world:
Stories from the open
source community

A collection of essays and interviews from opensource.com

Open Visions Issue Two

“The day TuxPaint became contagious”
Phil Shapiro

“Introducing students to the world of open source: Day 1”
Asheesh Laroia

“The four capital mistakes of open source”
Nicolas Pujol

“Rethinking office design”
Rebecca Fernandez

“Total victory for open source software in a patent lawsuit”
Rob Tiller

“Interview: PJ on the beginning, ending, and future of Groklaw”
Ruth Suehle

“Student participation in open source projects (A professor’s perspective)”
Heidi Ellis

“Three unspoken blockers that prevent professors from teaching open source
community participation”
Mel Chua

”Join the M revolution—Get your tools”
Luis Ibanez

“Open source cancer research”
Lori Mehen

“History of open source in government”
Gunnar Hellekson

“Document Freedom Day: Passion and politics”
Karsten Gerloff

3

5

9

11

16

18

23

27

31

36

40

46

Life

business

law

education

health

government

IN THIS BOOKLET

1Introduction

Introduction
Opensource.com launched January 25, 2010
as a platform for discussing the ways open
source is changing the world. Since then,
we’ve helped our community share hundreds
of stories about the power of open source
principles to spark radical change. Each of
these stories is an inspiring testament to the
wonderful—and often surprising—innova-
tions a commitment to open source values
can generate.

Every one has been a pleasure to tell. We’ve
explored some unanticipated topics over
the years, but we’ve never wavered from
our original mission: to shine a light on
the places where the open source way is
magnifying ideas and multiplying effort. And
we remain especially interested in topics
beyond technology—developments in areas
like government, education, business, health,
law, and everyday life, where open source
continues to grow.

We’ve noticed that once you become attuned
to open source values—collaboration, shar-
ing, meritocracy, transparency, participation,
community, and rapid iteration—you start to
see them everywhere. Eventually you might
wonder—like we do—just how different our
world could be if everyone embraced them.

This collection offers some of our most
compelling stories—portraits of a world
fashioned with a passion for open source.
Here you’ll find tales only our commu-
nity members could tell. Stories from the
trenches. From the library. From the cubicle.
From the capitol. From the classroom and
the boardroom and the courtroom.

Anywhere open source is making waves
and turning heads.

While bringing these stories to the world
is easy, selecting just twelve of them for
inclusion in this inaugural “best of” collection
was not. Our opensource.com moderators
lobbied hard for their many favorites. The
essays you’re about to read are among the
very best we have to offer from our first year
and half of publication—dazzling gems that
refract and intensify that light we shine on
open source.

Read them, ponder them, and don’t forget
to share them.

Then join the conversation at opensource.
com. We have many more stories to
tell together.

Perhaps one of them is yours.

	An open world:
Stories from the
open source community

life

3The day TuxPaint became contagious

I work at a public library with 28 Linux sta-
tions made publicly available in four separate
rooms. The room in which I spend most of
my time has 10 computers, and elementary
and middle school students stop by daily
after school to use them. About 90 percent
of the children use the computers for games,
and about 10 percent use them for doing
homework. Very few use the computer for
creative graphics applications. I’m bent on
changing that.

Our computers run three very interesting,
fun, and useful graphics programs. For
young children, we have TuxPaint1. We also
have the Inkscape2 vector drawing program
and the GNU Image Manipulation Program3

—known as the GIMP. A few years ago our
library offered a GIMP class for elementary
school students. It was a joy seeing the
students continue using GIMP after the
class came to an end. Unfortunately, the

GIMP contagion did not spread beyond the
students in the class.

Last week, I was really happy to see a
mother sitting at a computer with her
3-year-old son, with TuxPaint up on the
screen. The child was squealing with delight
as he used the various drawing tools in
TuxPaint. Listening to him speak, I noticed he
was highly verbal, too. “How old is your son?”
I inquired politely.

The mom smiled back and said, “He’s three.”

I explained that TuxPaint was a free program
and that the family could use it at home.
Mom told me the family has a laptop, so
I offered to install TuxPaint the next time
they visited the library. (TuxPaint runs on all
computer platforms–Linux, Macintosh,
and Windows.)

I did not expect what happened next.
Somehow, the word about TuxPaint spread

The day TuxPaint
became contagious
Phil Shapiro (originally published May 2012)

An open world: Stories from the open source community4

throughout our community. Older elementary
school students started exploring it in our
computer center. A few days later, a middle
school boy asked how he could use TuxPaint
on his computer. This is a boy who has
spent hundreds of hours playing first-person
shooting games.

This student went on to make a lovely draw-
ing in TuxPaint. I commented, “You’ve got
artistic talent.”

He replied, “My teacher once asked me to
draw a bunny rabbit for Easter and I drew a
really excellent rabbit.”

I offered to print his drawing on our color
laser printer. That’s when I noticed that Tux-
Paint was on most of the computers in our
computer center. A TuxPaint epidemic was
full-blown. Students of all ages were explor-
ing different aspects of the program.

I showed the sixth-grade student’s
drawing to a fourth-grade girl who was
enjoying TuxPaint.

“I’m going to try and make the same drawing,”
the fourth-grade girl said.

“Can she borrow your drawing for a little
while?” I asked the sixth grade boy.

He said, “Fine!”

Within a span of 10 minutes, the computer
center had transformed itself from a games-
playing room to a room full of creative explo-
ration. I can’t explain how it happened, but I
give a lot of credit to the programmers who
created TuxPaint. For those of you who work
with youth in outside-of-school settings,
there is hope that students will voluntarily
move themselves off a games-playing path
and onto a creative exploration path.

TuxPaint, Inkscape, and GIMP are all free
tools for creative exploration. It is possible to
see these programs making their way into
your community. I can tell you first-hand,
it’s a truly beautiful sight.

If you have ideas or tips for how to spur a
creative epidemic with these and other FOSS
programs, comment below or—even
better—consider writing an article for open-
source.com. This is the tip of the iceberg.
Reveal to us some of the rest of the iceberg,
won’t you? 

1.	 www.tuxpaint.org/

2.	 www.inkscape.org/

3.	 www.gimp.org/

5Introducing students to the world of open source: Day 1

From Blake Ross to Linus Torvalds, students
are credited with major achievements in the
open source community. But that’s not the
picture Yuvi Masory painted as he sat across
the table from me at an OpenHatch meetup
in Philadelphia.

“My lab is hiring,” he explained. “We need
students with programming experience and
who can find answers to questions. But the
students at Penn have never even heard
of IRC. They’ve never contributed to
open source.”

Yuvi is a graduate student and staff
programmer. He implored me to come to
campus and give a one-hour talk to under-
graduates about OpenHatch1, my project to

help new contributors find their way in
the community.

“Give me a weekend instead,” I said.

A weekend of immersion

We scheduled a planning session between
Yuvi, myself, and Felice Ford, a Linux-loving
classics major at Harvard who was visiting.

We settled on two days of rich interaction.
Even though programming students can
write code, most never see a bug tracker,
and very few learn about version control.
This creates a cultural rift where plenty of
people bounce off2 open source projects
because of build problems or lack of com-
munity leadership. We wanted to be there to
help students past problems like that.

Introducing students
to the world of open
source: Day 1
Asheesh Laroia (originally published November 2010)

An open world: Stories from the open source community6

We put up a website explaining the event3.
For Saturday, we planned four one-hour
sessions. Each session focused on a different
topic and offered students some hands-
on exercises. The second day was a more
typical “hackathon,” a project day where we
helped students find their way in projects of
their choosing.

To create a sense of commitment from stu-
dents, and to ensure a tight student-teacher
ratio, we limited Saturday to 20 students. To
help us prioritize people who were particu-
larly excited, and particularly new, we
asked for:

 • �One sentence about how they discovered
the event website

 • �One sentence about their current involve-
ment in open source (e.g., “never heard
of it”, “run Ubuntu”, “wrote most of the
Linux kernel”)

 • �One sentence about something they were
excited about learning

Since our goal was to make more students
aware of open source culture, we wanted
to work directly with students to kickstart a
local community. This strategy is unique, as
far as we know. You may have read about
the Professors’ Open Source Summer Experi-
ence4 that teaches professors so that they
can run a semester-long class for students.

Will they come?

To get the word out, we asked the University
of Pennsylvania’s computer science program
to email all 250 of its students. We also
reached out to students at Swarthmore and
other nearby colleges. Yuvi put up enigmatic
index cards, and a friend of his put up flyers.

Within minutes of sending the announce-
ment, the emails started rolling in. By the
end, we heard from fifty-one applicants.
Immediately overwhelmed, we switched

from worrying about advertising to reading
the applications.

What feels normal to us is apparently ex-
tremely exciting to these students. Reading
the emails was like reading fan mail. Some
wrote such gems as this:

 • �“My involvement with open source is
primarily composed of unabashed admi-
ration and adulation.”

 • �“I’m most excited to learn how to initially
get involved with a project, I’ve poked
around before, but the initial learning
curve has been too intimidating for me to
take the plunge.”

 • �“I have just read a lot about open source
software. I’m really interested in how
such collaborations create innovative
and effective products (Firefox!), as well
as the business perspective of how
these collaborations are organised
and run efficiently.”

 • �“I’d be excited about learning pretty much
anything that has to do with open source
software, the communities that create it,
and its social impact.”

 • �“I hope I make it! This sounds terribly
interesting!”

I just sat at my computer, reading and re-
reading, saying aloud: “This is so exciting!
These people are so excited!”

The students came from a wide variety of
ethnic and cultural backgrounds. More than
a third of the applicants were women, a
(slightly) more even ratio than the Penn CIS
program itself. Yuvi and I selected the thirty
most excited students and told them to meet
us on Saturday.

Now we needed teachers. Felice had cre-
ated #penn on Freenode as a chat room
for our burgeoning community. To our luck,

7Introducing students to the world of open source: Day 1

a GNOME hacker named Zach Goldberg5
appeared in the channel, and we convinced
him to take a bus from New York to his alma
mater. My friends Jonathan Simpson6 and
John Stumpo7 rounded out the teaching team.

We spent Friday afternoon and evening nail-
ing down logistics. Around 1 a.m., Yuvi and
I decided to switch which topics we would
teach. Felice organized the students into
groups based on their level of experience.
Finally, we could all go to sleep.

One busy Saturday

The teachers all arrived by 10 a.m., and we
set up wifi for the students to use. Teachers
taught the same topic four times in a row, so
we had the chance to improve our curricu-
lum. Students switched between teachers
and took a whirlwind tour of four areas
within the open source community:

 • �Communication technologies, like IRC and
mailing lists

 • �How to get, build, and modify open
source code

 • �Project organization, including version
control, bug trackers, and individual roles
within a project

 • �Linux and command line skills

We broke once for lunch, and another time
to discuss free software ethics in general
and licensing specifically. Finally, after stu-
dents had visited all four modules, we had an
open discussion to wrap up the day. About

twenty of our thirty students stuck through
until the end.

Much feedback was positive. One student
said about contributing to open source, “You
made it feel a lot more doable.” He contin-
ued, “You don’t have to be a pro programmer
to help or contribute something.” Another
enjoyed the variety of teachers and their

“different personalities, the different take
on things.”

One student was particularly taken by the
discussion of principles and ethics behind
the free software movement. “It puts ev-
erything in a different perspective,” she said
definitively. However, she found our use of
the term “hacker” a jarring distraction.

Toward the end of wrap-up, a student asked
us when we would be running another event.
At that moment, Yuvi and I looked at each
other in disbelief.

Overall, students enjoyed the down-to-earth
nature of the event. One student enjoyed
our “conversational tone” and explained, “It
was good to learn that open source people
aren’t cyborgs.” Another called upon us to
“Continue to keep it free [of charge]!”

What’s next?

Read about day 2 and holding your
own event8.

Check out our photo gallery9, snapped
Saturday and Sunday.

1.	� http://opensource.com/life/10/8/ready-be-open-
source-contributor-dont-know-where-start

2.	� http://jonoscript.wordpress.com/2010/09/
28/improving-the-discovery-path-for-new-
contributors/

3.	 www.penn.openhatch.org/old-index/

4.	� www.opensource.com/education/10/9/
open-source-education-educators

5.	 www.zachgoldberg.com/

6.	 www.sogeekithurts.com/

7.	 www.jstump.com/

8.	� http://opensource.com/life/10/11/introducing-
students-world-open-source-day-2

9.	� http://openhatch.org/blog/2010/photos-
from-penn/

	An open world:
Stories from the
open source community

business

9The four capital mistakes of open source

The four
capital mistakes
of open source
Nicolas Pujol (originally published February 2011)

How do you develop a successful open
source business that lasts? Of the more than
250,000 open source projects on Source-
Forge, few will be successful at that goal. But
one way they might think about how to do
it is by doing it in reverse: What should an
open source project or business not do?

The negative advice has existed since ancient
times, from one religion to another. The Ten
Commandments are for the most part writ-
ten as what not to do. We can go for a short
walk or drive around our neighborhood: road
signs give us, in very short messages we
can read while driving, negative advice. Ask
Warren Buffett about finance. He’ll tell you
“Rule #1 is ‘Don’t lose money,’ and Rule #2 is…
‘Don’t lose money.’”

Open source can also be better understood
through negative advice. The latter can be
back-tested and endure the test of time.
By following a positive framework (but
without falling into platonicity), one can
slightly increase the chances of success. But
by ignoring a negative one, you will most
certainly fail.

First negative rule: Reflexivity

Don’t try to sell the same product you are
giving away for the same use case.

As a business, open source is built on
sequential sets of events. Free software
and openness create an economy based
on non-monetary transactions. Instead of
money, people trade their time and, gener-
ally, their mind share in exchange for value.

An open world: Stories from the open source community10

It is the Mind Share Market. As this happens,
another economy takes shape that follows
the more common path of transactions using
money: the commercial market. In order for
the model to work, what is free and paid
must necessarily be complementary, there-
fore different. Differentiation is at the core of
all open source businesses, and its opposite,
reflexivity, is where the business tries to
sell the same good that it is giving away for
free. Reflexivity is destructive, as it starves
the provider and prevents the business from
developing financiallyi.

Second negative rule: Coercion

Artificial fences are self-defeating.

One of the key reasons customers choose
open source is freedom. Coercion is the
opposite and relies on forcing third parties
to behave in a certain way. At its roots, open
source exists because customers do not
want to be forced. The practice is hence
self-defeating, even if it can work on the
commercial market in the short run. Coercion
is viral: it can over time tarnish the broad
perception of open source as a deceiving
scheme and may invite others to do so if
temporarily successful. Barriers to entry and
exit are necessary, but in a Peter Drucker
style that seeks customer respect.

Let others deal with legally acceptable
deception.

Third negative rule: Isolationism

What works in some contexts doesn’t work
in open source.

Ecosystems thrive on extensibility and die
of bureaucracy. The ability to access code,
to re-distribute it in certain scenarios, and
to enable interactions with other compo-

nents gives open source an advantage not
readily available in many other business
models. Hundreds of thousands of engi-
neers (potentially one day, billions of people)
working together and contributing value can
outcompete a large corporation with the
same number of engineers on its payroll. But
for this to happen, collaboration must be
extremely simple. Observe technologies like
Linux, Firefox, WordPress, MySQL, Android
or Wikipedia: they make it easy for others to
extend their platforms from the periphery
to the core; almost invasively. Isolationism
blocks collaboration, partnerships, appli-
cation programming interfaces (APIs), and
defeats the purpose of being open.

Fourth negative rule: The salary addiction

Don’t do anything only for money—
especially open source.

The last capital mistake requires some con-
text. There are situations where a job and a
salary must take absolute precedence over
purpose. A job may be “just a job” to support
a family.

In other situations people end up in roles
they didn’t have to accept, but did so only
for financial reasons. Phoniness is the last
capital mistake of open source: it is not
only immoral, but often counterproductive.
People with a sense of purpose would do
what they do for free, regardless of incentive.
The latter exists, but cannot be the primary
driver of action. Matt Mullenweg likes to say
that code is poetry ii. Poetry is not created
on a mechanical assembly line. Passion does
not always translate into business momen-
tum. Revenues do matter. But if you see
open source as only business you will never
understand it.

i.	� Even Wikipedia, a nonprofit with nothing for sale,
does not give everything away. It retains its
brand, infrastructure and ad space (used today
for donations).

ii.	� This applies to code and to any other value gener-
ation and collaborative work; you are reading this
article on opensource.com.

11Rethinking office design

First, a confession. Despite the hip corporate
persona of Red Hat, when I first joined the
company everyone had typical cubicle farm
workspaces. Sure, there were hints that the
company aspired to Google-like coolness: a
foosball table, a game room, lots of free junk
food. But in our daily office-worker lives, we
were holed up in a standard maze of shared
cubicles. Our idea of “open office design”
was to persuade our cubemates to leave the
sliding doors open.

For six months, I labored happily in my gray
box, content to talk only with my supervisor
and my cubemate. So when the department
director announced that after the Christmas
holiday week, we’d be moving to a new “open”
space downstairs, I groaned inwardly. The cubi-
cle walls were being removed; the department

VP and managers would work in the same area
as everyone else; and the new space would
include lots of nooks and rooms for impromptu
collaboration and scheduled design-thinking
sessions. As the lone quiet, left-brained web
developer among a host of creatives, I was cer-
tain this sudden push for collaboration meant
I’d never get any work done.

I was mistaken.

According to the 2001 office design study,
Offices That Work: Balancing Communica-
tion, Flexibility and Cost (pdf)1, “the major
reason for an office today is to bring people
together: to socialize and share information;
to inspire and inform each other; to provide
guidance and feedback. Relatively little of the
work of most office workers requires deep,
individual concentration for hours at a time.”

Rethinking
office design
Rebecca Fernandez (originally published May 2010)

An open world: Stories from the open source community12

As a computer programmer, I was not exempt:

As the literature on computer engineers shows,
this is true even for the prototypical job function
requiring deep concentration. There do need to
be times and places for such work in the office,
but whether such places need to be assigned to
one person for his or her exclusive use, or requires
complete physical separation from others doing
the same work, has been challenged by many
corporations over the past decade.

Within a month in the new workspace, I
knew more about every colleague in my
department than I’d learned over the prior
half-year. My own role deepened from being
a ticket-resolving web monkey to a full-
fledged knowledge worker and vital part of
the team.

My fears about moving out of my cubicle

1. �Without cubicle walls to hide behind,
interruptions would be endless.

In one sense, there are more interruptions.
Communication is abundant—and more
frequent—when you can see your team
members. But the rapid flow of information
throughout the office actually reduces the
email, phone calls, and traditional scheduled
meetings needed, according to the study
linked earlier. Surprisingly, increased visual
contact actually contributes to fewer un-
wanted interactions. When you can glance at
a coworker and see that they look engaged
in a problem or irritated by a phone call,
you’re more likely to ask your question later
than if you had walked down the hall and
already poked your head into their office.

The study also notes:

�Our data suggest that individual performance or
productivity may be reduced in a given unit of
time, while both individual performance and that
of their team benefit over the life of the project.
In other words, this minute’s interruption can be
annoying, but over the life of the project such

“interruptions” tend to be seen as contributing to
overall success.

2. �In an open office design, there would be
nowhere to go when I needed to hold
a private conversation or think intently
without interruption.

A well designed open layout includes places
for these tasks. When Cisco redesigned
their offices2 to be more collaboration-
friendly and reflect modern work habits, the
company opted for a highly flexible design.
Only administrative assistants were assigned
longterm office desks; no one else has own-
ership over a particular workspace. Instead
they choose the type of workspace they
need for a few minutes, hours, or all day:

�Cisco employees are increasingly mobile—and
less and less working at a particular desk ...
Throughout the day, employees [select] an ap-
propriate environment to accomplish the task at
hand: meeting in a group, participating in a con-
ference call, or working alone on a spreadsheet
or project plan.

The Cisco plan includes a quiet area deemed
“the library” for work requiring intense con-
centration and quiet, as well as an etiquette
policy, developed by employees along the
way, which frames the use of different areas:
non-private meetings with one other person
should take place in smaller, open seating
areas, not a closed conference room,
for example.

The decision to change the Cisco office de-
sign was made after considerable thought:

�Like most companies, Cisco designed its office
space under the traditional assumption that em-
ployees would work in their own cubicles during
regular work hours and would need assigned work
spaces with their own desks, PCs, and phones.
The result was that meeting rooms were often in
short supply, while offices and cubicles remained
vacant 65 percent of the time on average.

13Rethinking office design

�Nobody would consider building a manufacturing
facility that they intended to use just one-third of
the time,” says Mark Golan, Cisco vice president
for WPR. “And yet that’s what we routinely do
with workspace. We realized that assigning
resources based on utilization would significantly
reduce Cisco real estate costs.” [emphasis added]

3. �With an open design, my superiors and
coworkers would be constantly scrutiniz-
ing my activity. I’d be self-conscious as I
went about my work.

When we moved to the open floor plan, I
found that I actually had more privacy than
before—when I wanted it. Within cubicles,
there is a sense of “pseudo-privacy,” where
your neighbors pretend not to hear your
phone conversations and feel awkward
speaking up if they have information that
would benefit you. But in an open office space,
you know who is hearing your conversations,
and your coworkers feel free to provide input.
If you want privacy, you know to hold the
conversation in a place designed for it.

In addition, I had not given ample consid-
eration to the value of making eye-contact
with colleagues. When you notice someone
approaching your desk, you can gauge
whether they mean to speak with you or
someone else. You have the opportunity to
jot down a final thought or finish a line of
code, because you have an extra moment’s
notice. And when you’re discussing a prob-
lem with a coworker, you can invite others
with a glance to join the conversation.

4. �With an open office, my coworkers’
annoying habits would be magnified.

Anyone who has worked for a few years has
shared cube walls with coworkers with not-
so-endearing habits. The one who checks
his voicemail on speakerphone. Or chatters
loudly and nonstop on her cell phone. Or
sings gospel songs. Or paints fingernails.
So you can imagine my trepidation at the

prospect of the removal of those (somewhat)
protective barriers.

What’s interesting is that when people can
see their office neighbors, they are far more
self-aware. But if your coworker sings in the
conference room during team meetings, you
may want to lobby for a desk at the opposite
end of the room.

Unexpected problems

While none of my fears materialized, other
problems did surface in our space.

1. Moving day, again?

Now that our department head and other
managers could watch the interaction be-
tween different coworkers, moving us from
one desk to another became an irresistible
urge. While my own desk only moved thrice
in two years, others seemed to be packing
up again just as soon as they’d settled in.
Initially we benefited from the new chem-
istry and collaboration. After several moves,
the cons of instability took over. Perhaps
we should have opted for a fully flexible,
choose-your-workspace environment
like Cisco.

2. Added mobility requires new technology

Cisco discovered that the needs of mobile
knowledge workers are different from
stationary employees. Most, if not all work-
places need power outlets to compensate
for the short battery life of laptops. The
company tried to provide uninterruptible
power supplies throughout the building, but
as the units beeped after an hour to signal
low power, they were highly disruptive. Cisco
is considering a pilot program allowing
employees to swap out dying batteries at
exchange and recharge stations.

In addition, Cisco used wireless and hard-
wired phone technologies to give workers

An open world: Stories from the open source community14

1.	� http://tinyurl.com/8tfn4es

2.	� www.cisco.com/web/about/ciscoitatwork/collab-
oration/connected_workplace.html

3.	 www.officesnapshots.com/

4.	 www.hbswk.hbs.edu/archive/4991.html

5	 www.bnet.com/2403-13056_23-190685.html

the ability to check voicemail and make
phone calls from any workstation.

3. Limited number of collaboration areas

We didn’t anticipate the culture shift that
accompanied moving into a new space
would require more spaces for collaboration.
Smaller areas for non-private meetings and a
second closed-door conference room would
have made our space a bit more usable.

4. Neighbor immigration

Our department, Brand Communications +
Design, was the first to receive permission
and funds for an open office design. That
space included a large, open meeting area
with several whiteboards and comfy chairs.
As employees from other departments were
invited to meet with us, they quickly noticed
what vibrant and collaborative meetings
sprung from the space. “Let’s meet over in
the Brand Comm space” became a common
refrain for anyone looking to hold an infor-
mal and insightful meeting. Unfortunately,
our space was not designed to host meet-
ings for multiple departments, and creating
similar spaces in those departments would
have been a valued decision.

5. Shifting requirements

An open office design must be regarded as
a work-in-progress. As new needs emerge,
the space must be able to accommodate. At
Cisco, this meant adding personal lockers for
purses or lunches, and larger filing cabinets
for employees whose jobs required them
to store forms or records. Within the Brand
Communications + Design space at Red Hat,
the function of several closed-door rooms
has changed over the years, serving as

everything from a video recording studio to a
library to a temporary office.

Real-world examples

So what does the open office look like? And
how does a business—without the budget
of a Google or an IDEO—build an equally
collaborative environment?

The Cisco case study shows that open office
environments are actually more cost-effec-
tive than more traditional types. A building
with large, closed-door office rooms could
convert those private rooms into door-less,
team “bullpen” rooms, where several col-
leagues work together. A department with
cubicles could remove the walls and replace
them with interconnected desks and smaller
meeting areas. The ideal open office project
would include its future inhabitants in the
design process.

There is a lot of inspiration to be found at
www.officesnapshots.com3, with pictures
of office spaces from Microsoft to Apple,
Twitter to Facebook, and plenty of smaller
businesses as well.

Articles like “Why Office Design Matters”4
from Harvard Business Review, and BNet’s
“Three New Designs for Optimizing Collabo-
ration”5 provide additional ideas and case
studies.

But more valuable may be talking to people
who work in open environments about their
experiences.

15Introduction

law

	An open world:
Stories from the
open source community

An open world: Stories from the open source community16

Total victory
for open source
software in a
patent lawsuit
Rob Tiller (originally published May 2010)

The jury verdict last Friday in favor of Red Hat
and Novell in a case based on bad software
patents owned by “non-practicing entities”
is an important victory for the open source
community. Those in the business of acquir-
ing bad software patents to coerce payments
or bring lawsuits should be worried. Two
such businesses were plaintiffs in our case,
and they did their best to confuse the jury in
one of their favorite locales, eastern Texas.
But it didn’t work. The jury unanimously
found that the patents were not infringed,
and, even worse for the plaintiffs, that the
patents were invalid.

The case was about allegations by IP Innova-
tion, L.L.C. (a subsidiary of Acacia Technolo-

gies), along with Technology Licensing Cor-
poration that Red Hat and Novell infringed
four claims from U.S. Patents 5,072,412,
5,394,521, and 5,533,183. The patents share
a common disclosure and are all titled “User
interface with multiple workspaces for
sharing display system objects.” The patents
relate to a computer-implemented system
and method for providing a graphical user
interface with multiple workspaces.

Like most patent cases, this one involved
technical subject matter and terminology.
However, the plaintiffs came forward with
minimal evidence to support their argument
of infringement. They also faced abundant
evidence showing that the patents were

17Total victory for open source software in a patent lawsuit

invalid based on prior art. In other words,
there was nothing new in these “inventions”
sufficient for a patent.

In these circumstances, you might suppose
that a rational patent plaintiff would dismiss
the case, perhaps in return for a token
payment. Instead, the plaintiffs decided
to ask the jury for millions of dollars. Their
theory appeared to be that the jury might
be confused by the technical terms and
unsympathetic to out-of-state businesses
with creative business models.

With that end apparently in view, the
plaintiffs’ counsel launched an attack on the
theory and practice of open source software.
It was clear during jury selection that our
jurors had no prior knowledge of, or experi-
ence with, open source. Plaintiffs attempted
to exploit this inexperience by arguing that
open source software involved behavior that
was, if not downright illegal, at least ethically
dubious. They promoted the fallacy that
open source distributors unfairly take the
property of others and thereby unfairly profit.
They also suggested that Red Hat’s public
criticisms of the U.S. patent system as it
relates to software and related calls for legal
reform were un-American and indicated a
secret fondness for the writings of Karl Marx.
I kid you not! As absurd as this argument
sounds, after many hours of sitting on a hard
courtroom bench, I briefly wondered whether
the jury might fall for this version of the
classic FUD strategy and be so fearful and
confused as to find for the plaintiffs.

It turned out that there was no cause for
concern. Michael Tiemann, Red Hat’s vice
president of open source affairs, explained
the fundamentals of open source so as to
make them clear, and even inspiring. He
explained that open source software is about
voluntary collaboration, not involuntary
expropriation. He also made plain that
Red Hat’s legitimate criticisms of the existing

patent system in no way shows a proclivity
to infringe patents or indifference to patent
claims, and that Red Hat respects and abides
by the law.

Our side took the opposite approach from
the plaintiffs, basing our case on facts and
evidence, rather than emotion and confusion.
Our experts carefully showed that our prod-
ucts were noninfringing and demonstrated
specific examples of prior art. In the end,
the jury saw through and quickly rejected
plaintiffs’ FUD. The jurors took a bit more
than two hours to find every one of 23 issues
in favor of Red Hat and Novell.

We learned many things from this experi-
ence, but I’ll note just three here. We now
know for certain that those in the business
of bringing software patent lawsuits are not
invincible, even in the supposedly patent-
friendly jurisdiction of the Eastern District of
Texas. We know that Texas juries are willing
to reject bogus infringement claims and
invalidate bad software patents. And we
know that attacks on open source based on
FUD will not stand up when subjected to the
light of truth.

An open world: Stories from the open source community18

Over the last eight years, Pamela Jones,
known as “PJ,” wrote volumes at Groklaw1—
first as a blog about the holes in SCO’s
claims, then increasingly as a place for wider
commentary on the legal issues facing Linux
and open source. To summarize the site’s
mission statement2, Groklaw was a full legal
news resource, “acknowledged and used
by all the parties, including SCO.” But it was
also a community—a place for open source
believers to gather, learn, and share.

Last month PJ announced that because
SCO as we knew it is no more, she would
stop publishing new articles today3, May 16,
Groklaw’s anniversary. Now she’s handing
the reins over to Mark Webbink4, former

general counsel at Red Hat, law professor,
and board member at the Software Freedom
Law Center, to create “Groklaw 2.0.”

Here’s what she had to say about Groklaw’s
past and her future.

What inspired you to start Groklaw?
Did you anticipate the audience it came
to appreciate?

When I started, I was literally just practic-
ing for a job interview. I had no knowledge
of the Internet, obviously, so I didn’t know
the whole world could see what I was doing.
When people showed up, it was a shock, and
the numbers—it was hundreds of people all
of a sudden, then thousands, until we finally

Interview: PJ on the
beginning, ending,
and future of
Groklaw
Ruth Suehle (originally published May 2011)

19Interview: PJ on the beginning, ending and future of Groklaw

had to move to larger quarters. After I got
more used to it, it was exciting too. Because
when I saw the level of technical knowledge
my readers had and how much they wanted
to learn how the legal process works, I real-
ized what it could mean, what we could do,
if I could learn to ride the wave.

Where do you think Groklaw has been most
informative and influential?

It’s hard to praise oneself without feeling
idiotic. But as a group, what we showed is
that if the FOSS community gets behind an
effort to do legal research, no single law firm
can beat them. The community we built lived
computer history. The gray beards are still
among us, after all. So we have UNIX guys
and we have Linux guys, the very people
whose code was being fought over by corpo-
rate interests.

So we were a voice, a way for the community
to point out what was not true, and they
could point to the evidence that it was not
true. Law firms don’t have that, and you
could see the difference. They might have
an expert, but that person can’t compete
with a community like Groklaw’s. They’d file
a document with the court and within hours
the community would have taken it apart
and shredded it, and they were right, over
and over and over.

What I am most proud of is our trial cover-
age in SCO v. Novell, the jury trial. That and
being the ones to first publish the previously
sealed settlement agreement from the BSDi
litigation. I’m proud of the fact that the com-
munity we built is still strong, still ready to
do whatever needs doing. Building and main-
taining a community isn’t as easy as it looks.
Over the years, some thought they could do
a better Groklaw, and they did try, but none
of them continued or ever really took off.

If you were starting Groklaw again today,
with the benefit of the experience you’ve
had, would you do anything differently?

I was naive in the beginning. I didn’t know
people as venal as I was about to be writing
about. And I didn’t know anyone personally,
except for one relative, who lied without any
apparent pangs of conscience. So at first,
whoever showed up to help was accepted at
face value. Later, I realized that some were
operatives working to destroy from within.
It was a sad and creepy lesson to have to
learn. If I were starting it up now, I would
factor that knowledge into every part of
what I built.

Why did you decide to discontinue working
on Groklaw?

I’ll still be working on it, just not doing ar-
ticles. I want to finish the Comes v. Microsoft
exhibit collection and fix some other loose
strings, so the work stands the test of time
and is truly useful to historians and lawyers.

I can’t do that and write articles every day.
And I have a number of personal and other
work projects that I shoved to the back
burner in order to do Groklaw, and now that
the emergency for Linux is handled, it’s time
to prioritize in a more normal way. We won,
the emergency is over, and I get to relax a
bit now.

So that is part of it. But the most important
consideration was this: I was born to write
Groklaw, about SCO and the Linux kernel and
copyright litigation. But the battlefield now
has shifted to mobiles and patents. I thought
seriously about that, and I recognized that I
am not the right person to take the lead on
that. I always hated patent law, and nothing
I’ve seen in the last 8 years has altered my
feelings. I hate software patents with a pas-
sion, I think they are destroying innovation
in the US, and that they particularly threaten
FOSS, the open development model being

An open world: Stories from the open source community20

opposed to patents. I think software and
patents need to get a divorce.

I consider that a serious enough matter that
I thought modesty needed to inform me to
stop, that others could fill the role and would
if I did. Then when I announced I would stop,
I was flooded with requests to find someone
to continue, and I realized the community
was right. It was irresponsible if I didn’t try
to maintain the community, their skills, in
one place. And happily, we found someone.
I think Groklaw will end up more impor-
tant than it’s been, actually, because Mark
Webbink is lawyer, a FOSS lawyer, and a law
professor. With him taking the lead, and his
law students —and we hope eventually
others at other law schools—joining the
community, it can grow in the direction that
is needed now. They can explain the law, and
the community at Groklaw can help them
understand the tech. It’s what Groklaw is for,
what I dreamed it should be—a place where
the two communities can teach each other,
so they can together hopefully help judges to
understand the tech so they can reach better
decisions, ones based on technical realities.
So this is organic, part of what Groklaw is
supposed to be, just the next step.

Part of Groklaw’s success was realizing that
we could contribute just as we are, without
trying to be more than we were. But that
means also remaining modest and aware of
what we were not qualified to do. I always
said the only legal advice I ever give is, Ask
your lawyer. Well, now Groklaw is going to
follow that advice and get a lawyer. It’s a
natural progression. And it’s the right time,
given Microsoft’s rather obvious strategy of
using patents against GNU/Linux.

How would you describe the relationship
between Groklaw and open source?

Groklaw is an application of Open Source
ideas to legal research. But Open Source

doesn’t mean a free for all. With the Linux
kernel, Linus and his maintainers rule ulti-
mately. Everyone can contribute freely, but
as you go up the chain, there is an edito-
rial process, so that the best get the most
responsibility and the final say belongs to
Linus. Same with Groklaw.

After there were threats and harassment,
we had to be less open to the world about
certain things, to protect everyone. That’s
not something open source software
projects have to deal with, so the differences
that sometimes people comment on are due
to that distinguishing factor. For example,
at first I’d ask people if they wanted public
credit for their work. Lots did. Later, nobody
did, but they still worked just as hard. So,
internally we knew who deserved the credit
and who should get more responsibility, but
outside it was not apparent. Like a pool that
looks peaceful on the surface but below
there are currents flowing in all kinds of
ways at once. Groklaw is like that. And it’s
proof to me that people don’t volunteer for
such projects out of ambition or a desire for
credit. The community continued to work
just as hard as before, and for absolutely
nothing in return, just to make a difference if
we could. Kind of like you see in communities
threatened by a flood and they all go out and
fill bags with sand.

I sometimes say that if the whole world was
like the FOSS community, everything would
be better. And I mean it.

What do you think are the lessons that
Groklaw holds for open source and
collaborative communications efforts
in other areas?

That it works just as well for legal research
as for software development, so long as you
have an editorial process to decide what is
accepted and what isn’t and as long as you
approach your particular task in a pragmatic

21Interview: PJ on the beginning, ending and future of Groklaw

way, recognizing that software develop-
ment isn’t like many other types of projects.
But what is key is the ability to put together
thousands of people all over the world and
get them to work unitedly toward a common
goal. It’s a remarkable thing. I wouldn’t have
missed it for anything in the world, and I’ll
never forget it. When Groklaw would win
awards, I’d always credit the group, and
sometimes people would act like that was
just pro forma. It was not. I certainly and
absolutely could never have done Groklaw
alone. There is a kind of dynamic to a large
group that is as powerful as a tornado but in
a positive way—when you let people show
initiative and they send you their ideas and
materials and evidence and personal experi-
ence and let them try things. All you have to
do is provide a little direction. Sometimes it
works, and sometimes it doesn’t, but when
it works, you can change a little bit of the
world. Groklaw indubitably did.

Do you have any future projects,
particularly relating to open source or
technology, in the works?

My fervent desire is to leave the limelight
behind and live a private life again. I always
wanted that. Since I never planned for
Groklaw to become Groklaw, it was a mixed
blessing when it happened. It was fun, it
was creatively exciting, and ultimately it was
fulfilling in a way that I can’t even put into
words. Maybe this: I know something I did
in this world actually mattered. It’s quite a
feeling. But as I said, it wasn’t a plan, and I
certainly have never been ambitious, and I
didn’t want anything from Groklaw except
to be effective. Now that it is, I’m happy and

satisfied. I never wanted to be “somebody”
and fame repels me, frankly, and I’ve avoided
it. Now, I have an opportunity to go back
to my previous personal life, happy in the
knowledge that we did what we set out to
do. I’ll be around in the sense that I’ll be in
the background until I finish the transition,
training the new people, and finishing up the
polishing of Groklaw’s records. Then, it’ll be
me on my porch, waving at cars as they go
by, and just living a relaxed and normal life
again. I’ve never worked so hard in my life as
I did on Groklaw, and I need, really need, to
rest up a bit.

1.	 www.groklaw.net/

2.	� www.groklaw.net/staticpages/indexph-
p?page=20040923045054130

3.	� www.groklaw.net/article.php?sto-
ry=20110409161444432

4.	� www.groklaw.net/article.php?sto-
ry=20110515173831922

	An open world:
Stories from the
open source community

education

23Student participation in open source projects (a professor’s perspective)

I must start by thanking Mel Chua1 for visiting
us in Connecticut and for prompting/prod-
ding me to think more deeply about how
open source and academia work together to
accomplish education. I believe I now have
a better picture of student and academic
participation in open source projects.

At first look, student participation in open
source projects seems like it should be
relatively easy to accomplish. Sure, from a
teaching perspective there are issues related
to selecting a project, learning curve for the
project, finding a mentor, identifying ways
that students can participate, figuring out
how to grade things, and more. But these
things are surmountable.

But in recent years, some rocks in the river
have appeared that make navigating the

current of open source involvement trickier
than it first seemed.

When two groups collaborate, they typically
do so to accomplish common goals or to
work together towards goals for both groups.
In this case, the goals of the two environ-
ments differ. The open source environment
seeks to create a product that meets user
needs. The academic environment seeks to
produce students with a certain knowledge
and skill set. These differences need to be
understood in order for academic and open
source project collaboration to be successful.

Open source communities would like to see
larger numbers of developers contributing
to their projects (as would I). And some in
the open source community view students
as a possible source of future development

Student participation
in open source projects
(A professor’s perspective)
Heidi Ellis (originally published December 2010)

An open world: Stories from the open source community24

(I happen to agree). Academia sees open
source as an opportunity for students to gain
real-world experience, learn professional-
ism, and have some evidence of software
proficiency that they can demonstrate to
potential employers. Making a contribution is
helpful, but not essential.

Can open source and academic collabora-
tions accomplish the goals of both groups?
I think so, but there are some differences
in the environments which present... well,
we’ll call them “learning opportunities.” In
order for a particular collaboration to be
successful, it helps if both groups under-
stand these differences.

While talking with Mel, it became clear how
much the two environments differ with
respect to pace, planning, and constraints.
The open source way is very opportunistic
and flexible, while academia is very planned
and structured. The open source way
emphasizes short-term optimization and
taking immediate advantage of resources
(for example, developer expertise, time, or
funding). Resources can appear and disap-
pear relatively quickly in the open source
environment. With the fluid nature of both
resources and participants, it is difficult to
estimate long-range (one or more years)
results. This is not to say that open source
projects do not do long-term planning, but
that the development process is sufficiently
flexible to allow projects to change paths or
goals as new opportunities open up.

Academia is built around concepts of long-
term optimization and resources allocated
over time. Academics have a fairly fixed set
of resources (for instance: time, instructors,
students) which vary little over the long term
(several to many years). In addition, academ-
ics operate under a series of constraints.
Academic resources are bound by time

limitations, such as semester schedules and
class hours. They are bound—obligated—to
syllabi, learning outcomes, and grading.
These things cannot typically be changed
within a three-to-four-month timeframe,
and sometimes not within a year. This limits
the ability of academia to take advantage of
the opportunities that arise spontaneously
from open source.

The pace of the two environments is also dif-
ferent. The open source environment tends
to be fast-paced and less predictable with an
intermittent pattern of effort as people have
more or less available time to contribute.
Academia has a much slower pace (some
might say glacial) with higher predictability.

The academic schedule is certainly predict-
able. Class schedules are often created six
to eight months before the term starts. In
addition, curricula plans encompass all four
years of a student’s stay at an institution.
Therefore, classes must be supplied to meet
the curricula that was in place at the time
that a student entered the institution. In
addition, changes in curricula are typically
phased-in over a four-year period.

Clearly, there are also large differences
in culture. But I think that collaboration
between open source and academic realms
can work, as there are also some strong
commonalities between the groups. The
open source and academic environments
both share the desire to create something,
to produce a product that people will use.
Both groups have a love of learning and both
groups are based on the idea that something
(whether it is knowledge or software) should
be accessible to everyone. Both groups have
a desire to belong to a professional group, to
be interacting as professionals and partici-
pating in ongoing professional activity. And
interestingly, I think both groups share the

25Student participation in open source projects (a professor’s perspective)

desire to be self-directed and to have control
over what they do.

So what else have I learned, as a professor
trying to get more students involved in open
source? Lots!

Participation in open source definitely
benefits students. I have watched students
gain invaluable professional knowledge
and experience, growing skills and forming
professional networks through participation
in open source. Many students are motivated
by participation in open source projects in
a way they aren’t in a traditional classroom.
They have a better understanding of how the
seemingly esoteric things they’ve learned in
their courses matter.

Setting expectations is important. Expecta-
tions are important—for both the student
and for the open source community. The
differences in cultures identified above must
be understood by both groups in order to
support a successful collaboration. The ac-
tual methods and manners of participation in
the project may look very different from the
academic and open source perspectives.

I can be more opportunistic. My preferred
approach is to plan things out well in ad-
vance. Talking to Mel made me realize that
there were lots of opportunities that occur
spontaneously. With little effort, I could take
advantage of these opportunities if I’m will-
ing to alter—or abandon—my plan.

For instance, with two days notice, Mel and
I set up a Hack Share2 where we invited
Sebastian Dziallas3 to come hack (live and
in-person) and teach students how to
package an application. I would not have
attempted this on my own, assuming that
I would need lead time to advertise, get
resources, secure a location—all the details.
However, Sebastian’s talk was very well at-
tended and a huge success on a small scale.

Could I have gotten a larger attendance?
Sure! But not in my window of opportunity.
With little time to plan, the Hack Share
reached only a small number of people. But
if I refused to try because of the immediacy
of the opportunity, the event might not have
occurred at all. The trade-off is to reach
fewer people in smaller ways, but with a
larger number of experiences. The conversa-
tions I’ve had with Mel—and the success we
had with this quickly formed event—encour-
age me to take advantage of opportunities
that arise.

Academia needs to be sure to give back
to the open source community. One very
real danger of student participation in
open source software development is that
students will learn from the community,
gain from the community, and then not
provide anything back to that community.
This violates the open source way and could
easily break up open source/academic col-
laborations. In my opinion, the onus is on
professors to find a way to provide some
return value to the open source community.
This value does not necessarily need to be in
the form of code, and could easily take the
form of documentation, wiki gardening, or
other needed tasks.

I believe that our efforts involving students
in open source projects will pay off for the
open source community—in the long run .
It may be many years before these benefits
will be reaped. I say this for several reasons.
First, most students are focused primarily
on their degree and then on getting a job.
These are folks who are (rightly so) spending
most of their energy on establishing careers.
This means that for at least a year (perhaps
longer) after graduation, these folks may not
have time to contribute to open source projects.

An open world: Stories from the open source community26

Second, I believe that students will carry
the banner for open source, but that it will
take time for the idea to spread. Remember
that students are not professionals and
they are learning how to participate openly,
in addition to the material in all their other
classes. They typically have a much longer
entry timeframe into open source than an
experienced developer.

Lastly, academia moves at a snail’s pace
compared to the open source world. It will
take time for professors to understand the
opportunities offered—and the social obli-
gations necessitated—by involving students
in open source. And it will take them even
longer to change their own classes to include
open source; longer still to have open source
integrated across a curriculum.

These observations have both positive and
negative repercussions for the open source
community. The bad news is that there is not
likely to be a huge influx of new open source
developers—graduating college students
familiar with the open source way—in the
near future. This is compounded by the fact
that the number of computing students has
not yet recovered from the steep decline in
numbers that occurred in the 2000s.

The good news is that there is likely to be
a trickle of these university-taught devel-
opers and that this small stream is likely to
continue for many years. It is my hope that
the stream will grow as word spreads and as
more professors adopt approaches involving
students in open source projects.

One significant advantage in our efforts to
make open source more prevalent on college
campuses? The already-growing awareness

of open source within the computing student
population and beyond. Students are excited
by participating in open source, no matter
how it’s introduced. Hopefully this excite-
ment will catch fire in academia—in the
classrooms and beyond.

1.	 www.opensource.com/users/mchua

2.	� http://opensource.com/education/10/11/open-
source-and-student-engagement-explained-
5-minutes

3.	 www.opensource.com/users/sdziallas

27Three unspoken blockers that prevent professors from teaching open source community...

One of the hardest things about trying to
bridge two worlds—for instance, open
source communities and academic institu-
tions—is all the stuff you don’t hear on a
daily basis when you’re working remotely.
Sometimes it takes several rounds of garlic
bread and pasta for people to begin articu-
lating what’s blocking them from teaching
their students how to participate in FOSS
communities. Sebastian Dziallas1 and I sat
down last weekend at the 2010 Frontiers
in Education conference2 with a group of

professors from the Teaching Open Source
community3. “What are the biggest blockers
that you’re facing in doing this,” we asked,
“that people in the open source world just
don’t know about or understand?” Here are
their answers.

Blocker #1: Intellectual property policies,
aka “No, you can’t release that under an
open license.”

At some schools, if you make it on campus,
for campus, or with resources from campus,

Three unspoken
blockers that
prevent professors
from teaching open
source community
participation
Mel Chua (originally published November 2010)

An open world: Stories from the open source community28

guess who owns it? Yep: campus. One way
colleges and universities make money is

“technology transfer,” a form of intellectual
serfhood—if you’re a professor, a student,
or a lab, you get resources (students, classes,
space, equipment) from the school, but all
the IP you produce is owned by the school,
so the school takes care of licensing that IP
out to companies that want to use it... and
keeps the cash.

If you’re a school, this arrangement works
out in your favor, so you put policies in place
specifically preventing students and profes-
sors from giving away their “schoolwork” for
free, because... well, that’s how you make
money. The concept of open licensing as a
benefit (free marketing!) to the university
instead of a drain (giving away precious IP
we’d otherwise sell at a profit!) is new to
many places, and when you’re trying to get
a project started for a ten-week class, you
can’t afford to spend all ten weeks patiently
educating university administration about
the benefits of licensing (while you simulta-
neously try to learn data structures in Java).

So that’s one bug.

Blocker #2: Student privacy, aka “We’re
going to make your students fill out forms
now before they can release their work
for class.”

Even if professors (and students) think it
would be beneficial for student work and
professor feedback on that work to be out
in the open where more people can see and
comment on and benefit from it, clearance
has to be specifically sought because of fed-
eral regulations like the United States’ Family
Educational Rights and Privacy Act (FERPA).
These are designed to keep sensitive data
about students (read: grades) under their
own control. But it’s a fine line to walk—
can you require people to upload graded
classwork to a public server? Can you do your
comments and evaluations there? Can you
require them to list their names? To work
and interact with a community they may not

want to work with (for instance, if your class
is a requirement, and students aren’t there
voluntarily)?

Different institutions have different policies,
and some professors may not have the time,
the legal expertise, the political capital, or
the ability to take the risk and step forth for
the advocacy this might take at their particu-
lar school. When you’re at a school to teach
students, you want to spend time teaching
them, not responding to letters from admin-
istrators concerned about families complain-
ing that you’re broadcasting their children’s
private data.

Blocker #3: IT support, or the lack thereof.

People from the open source world are used
to the following workflow when they want
to show others a new piece of (open source)
software:

1. Go to the computer sitting on your desk.

2. Download and install the software.

3. �Email your friend the link to your web server.

Professors can do the same thing, but once
they want to make that resource available to
the students in their classes, they may have
to first:

1. Ask IT for an internally hosted box.

2. Wait a while.

3. � �Try asking, “When can my TA and I have
an account on a server? Any server! Any
server at all!”

4. � �Offer, “Yes, yes, I’ll administer it myself (in
my nonexistent free time).”

5. Fill out more forms.

6. �Worry that half the semester is
already over.

7. �Wonder how much longer this is going
to take.

8. ...and so on.

29Three unspoken blockers that prevent professors from teaching open source community...

1.	 www.opensource.com/users/sdziallas

2.	 www.fie-conference.org/fie2010/

3.	 www.teachingopensource.org/

Even if you get IT’s permission to try out
something, or persuade your students to
try out some open source applications on
their own, the question then becomes one
of support. If your students install Linux and
tinker around and crash their computers, IT
isn’t going to fix it. Students know this and
often don’t want to take the risk. If they do,
and things break, they’ll come to you—and
so in addition to being a professor, you now
get to provide technical support for your
entire class for applications you are probably
not familiar with debugging.

How can we help?

Remember, these comments came from
professors who have already fought through
whatever they needed to figure out in order
to start getting their students involved.
These are the people who are already
clearing out these blockers—often working
for several years to even be able to start
to teach their students about FOSS. These
professors are still few in number, and the
first of their kind, oftentimes standing as
the only faculty member in their institution
who doesn’t think the idea of teaching FOSS
is crazy. These people are our allies. How
can we help them get past the “community
participation bugs” that are stumping them?

Thanks to Heidi Ellis (Western New England
College), Matthew Burke (George Washing-
ton University), Clif Kussmaul (Muhlenberg
College), Greg Hislop (Drexel University),
Mihaela Sabin (University of New Hampshire),
and Steve Jacobs (Rochester Institute of
Technology)—for the discussion that led to
these notes, and to Sebastian Dziallas (Olin
College) for helping me write them up into
this article.

	An open world:
Stories from the
open source community

health

31Join The M Revolution—Get your tools

Join the M revolution—
Get your tools
Luis Ibanez (originally published March 2012)

The M programming language is also known
as MUMPS. Which stands for Massachusetts
General Hospital Utility Multi-Programming
System. Read my earlier post1 introducing
the multi-user, strongly imperative language
designed to manipulate and control massive
databases. Then get started using it with
this tutorial.

Two main software environments are
available today for programming in M:

 • Intersystems Caché2

 • �FIS GT.M3

You can download an evaluation version of
Intersystems Caché4, but because FIS GT.M
is free and open source, we will use it here
as the reference system for this tutorial.

The M language has a well defined set of
standards:

 • ISO/IEC 11756:19995

 • �ISO/IEC 15851:19996

We will stick to the M-standard in the ex-
ercises of this tutorial, therefore the source
code examples should work in both GT.M
and Caché environments.

Let’s focus now on installing GT.M and
getting it to work in your favorite Linux
installation.

“Every tool is a weapon—if you hold it right.”
—Ani DiFranco

An open world: Stories from the open source community32

Step 1: Download and install GT.M

Download and install GT.M:

$ wget http://download.source
forge.net/project/fis-gtm/GT.M%20
Installer/v0.11/gtminstall7

$ chmod +x gtminstall

$ sudo ./gtminstall —utf8 default

Work is in progress to create Debian
packages for GT.M (debian-med fis-gtm)8,
and they should be available soon. In the
meantime, the instructions above are the
most straightforward way to install GT.M
in your Linux environment. Note that this
installation will use easy defaults. Such an
environment will be good for trying out GT.M
and for running through the exercises of this
tutorial, but it may not be good enough for a
production system. Consider this installation
a safe sandbox for learning M.

The executables of the installation will, by
default, go to one of the following direc-
tories (depending on whether you are in a
32-bit or 64-bit architecture):

/usr/lib/fis-gtm/V5.5-000_x86/

/usr/lib/fis-gtm/V5.5-000_x86_64/

Now we set up the environment variables for
GT.M by sourcing the gtmprofile file.

From your shell, do the following:

$ source /usr/lib/fis-gtm/

V5.5-000_x86/gtmprofile

You will see output similar to:

%GDE-I-GDUSEDEFS, Using defaults

for Global Directory

 /home/ibanez/.fis-gtm/V5.5-000_

x86_64/g/gtm.gld

 GDE>

%GDE-I-EXECOM, Executing

command file /usr/lib/fis-gtm/

V5.5-000_x86_64/gdedefaults

GDE>

%GDE-I-VERIFY, Verification OK

%GDE-I-GDCREATE, Creating Global

Directory file

/home/ibanez/.fis-gtm/V5.5-000_

x86_64/g/gtm.gld

Created file /home/ibanez/.fis-gtm/

V5.5-000_x86_64/g/gtm.dat

%GTM-I-JNLCREATE, Journal file /

home/ibanez/.fis-gtm/V5.5-000_

x86_64/g/gtm.mjl created for

region DEFAULT with

BEFORE_IMAGES

%GTM-I-JNLSTATE, Journaling state

for region DEFAULT is now ON

For the long term, it is convenient to do this
from the initialization file of your favorite
shell. For example, in bash, add the follow-
ing lines to your $HOME/.bashrc file:

Set up GT.M environment.

source /usr/lib/fis-gtm/

V5.5-000_x86/gtmprofile

33Join The M Revolution—Get your tools

This adds a set of GT.M-related variables
to your environment, and also adds the
GT.M executables to your PATH. If you are
curious, you may want to take a look at
those changes by doing the following in the
prompt of your bash shell:

$ env | grep gtm

Now you can run GT.M for the first time by
simply typing gtm at the shell prompt.

$ gtm

This should open the GT.M prompt:

GTM>

At this point you can type a couple of verifi-
cation commands. For example:

GTM>write $zversion

GT.M V5.5-000 Linux x86

GTM>halt

The “intrinsic special variable” $zversion9
returns the version of the installed M
environment. The halt10 command stops the
gtm interpreter and returns control to the
operating system, so you will be back at
your shell’s prompt.

The initialization process creates a local
installation in your home directory under:

$HOME/.fis-gtm

with the subdirectories:

$HOME/.fis-gtm/r

$HOME/.fis-gtm/V5.5-000_x86	

(if in a 32bits architecture)

$HOME/.fis-gtm/V5.5-000_x86_64

(if in a 64bits architecture)

As we write code examples, these are the
directories where the code will go.

This is a good point to note that M/MUMPS
is a combination of a programming language
and a database (as was kindly pointed out
by one of the first commenters to our pre-
vious post)11. We will try to be more explicit
going forwards when we are referring to the
language versus when we are referring to
the database.

Step 2: Testing the installation

We can now write a “hello world” program.

First, set the path to your favorite editor in
the “EDITOR” environment variable of your
shell. For example in bash:

EDITOR=/usr/bin/emacs

or

EDITOR=/usr/bin/gvim

Then from the same shell, invoke gtm, and at
the prompt, request to edit the “Hello.m” file:

GTM>ZEDIT “Hello.m”

This should open the editor program that
you just set up in the EDITOR environment

An open world: Stories from the open source community34

variable, and now you can type in it the
following M code:

MYLABEL ; This is a comment

WRITE !,”Hello World”

QUIT

Note that the second two lines leave one
blank space in the first column, while the
first line (containing a label) starts in the
first column.

Then save the file and quit the editor. Once
back at the gtm prompt, type:

GTM>ZLINK “Hello”

and execute the program by using the
DO12 command:

GTM>DO MYLABEL̂ Hello

Hello World

Let’s now edit the program again by typing:

GTM>ZEDIT “Hello.m”

and once in the editor, let’s insert
another line:

MYLABEL ; This is a comment

WRITE !,”Hello World”

WRITE !,$HOROLOG

QUIT

Then save the file and link it again with
the command:

GTM>ZLINK “Hello”

It is important to call ZLINK12 every time that
your modify the source code, since it will
recompile it and will replace the previous
code in the current environment. Now you
can execute the new version with:

GTM>DO MYLABEL̂ Hello

Hello World

62520,56765

The $HOROLOG13 special variable returns
the date and time as a string value speci-
fying the number of days since December
31, 1840 and the number of seconds since
midnight of the current day. (Read why that
date was chosen.)14

Step 3: Looking under the hood

You may find it interesting to see where the
source code and compiled versions of your
routines are going. Take a look at
the directories:

$HOME/.fis-gtm/

V5.5-000_x86_64/r/

$HOME/.fis-gtm/

V5.5-000_x86_64/o/

where you will find the files:

$HOME/.fis-gtm/

V5.5-000_x86_64/r/Hello.m

$HOME/.fis-gtm/

V5.5-000_x86_64/o/Hello.o

35Join The M Revolution—Get your tools

1.	� www.opensource.com/health/12/2/join-
m-revolution

2.	 www.intersystems.com/cache/index.html

3.	 www.fis-gtm.com/

4.	� www.intersystems.com/cache/downloads/index.
html%20

5	� www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=29268

6	� www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=29269

7	� download.sourceforge.net/project/fis-gtm/
GT.M%20Installer/v0.11/gtminstall

8	 www.debian-med.debian.net/tasks/his.fr.html

9	� www.tinco.pair.com/bhaskar/gtm/doc/books/pg/
UNIX_manual/ch08s49.html

10	� www.tinco.pair.com/bhaskar/gtm/doc/books/pg/
UNIX_manual/ch06s07.html

11	� www.opensource.com/health/12/2/join-m-revo-
lution#comment-9013

12	� www.tinco.pair.com/bhaskar/gtm/doc/books/pg/
UNIX_manual/ch06s38.html

13	� www.tinco.pair.com/bhaskar/gtm/doc/books/pg/
UNIX_manual/ch08s05.html

14	� www.en.wikipedia.org/wiki/MUMPS#
Epoch_choice

15	� www.tinco.pair.com/bhaskar/gtm/doc/books/pg/
UNIX_manual/index.html

16	� www.vistaexpertise.net/docs/pocket_guide.pdf

Acknowledgments

Many thanks to K.S. Bhaskar (Development
Director at Fidelity National Information
Services, Inc.) for his guidance on fis-gtm
and for providing the large majority of the
materials presented in this tutorial. All errors
that may have slipped above, of course, are
mine alone.

References

The complete reference to the M language is
available at:

www.tinco.pair.com/bhaskar/gtm/doc/
books/pg/UNIX_manual/index.html15

The pocket guide to MUMPS is available at:

www.vistaexpertise.net/docs/pocket_
guide.pdf16

An open world: Stories from the open source community36

Open source
cancer research
Lori Mehen (originally published December 2011)

When it comes to treating, curing, and pre-
venting cancer, modern medicine has largely
failed. You could argue that cancer is far too
complicated to unravel in the few millenia
we have been documenting it. Or that the
billions we spend annually on research is far
too little. Established incentives and policies
that perpetuate research silos certainly
seem to slow success.

Medical researchers have been trained in a
professional culture where secrecy reigns,
where they must protect their own interests.
The dominant culture discourages sharing
research findings and collaborating on
projects. It has become more important to
protect vested interests than to take advan-
tage of the huge collaborative network that
is available in academia.

This mode of thinking is a bitter pill to
swallow for the quarter of our population
that will die of cancer. According to the
World Health Organization1, one in every four
deaths is attributable to cancer.

What would happen if cancer researchers
were able to adopt an open and collabora-
tive approach like the one that has—for the
last two decades—revolutionized software
development? What if cancer research could
be open source?

Linux has been successful because a large
group of people recognized a need and
agreed on a process for meeting that need.
The brilliance of the open source approach is
in the sheer amount of participating brain-
power. The open source community shows
that the collective intelligence of a network
is greater than any single contributor.

37Open source cancer research

While the term is attributed to software
development, the idea is not. In fact, some
medical research does use this method-
ology in the same way that Linus Torvalds
and others develop open source operating
systems. The Human Genome Project2,
for example, very successfully distributed
gene-mapping in efforts to speed up the
sequencing of the genome. The HGP teams
published their data openly, on the Internet.

More recently, a team of Harvard3 research-
ers discovered the power of distributed
research. A team led by Jay Bradner4 at the
Dana Farber Cancer Institute5 discovered a
small-molecule inhibitor that showed prom-
ise in its ability to interrupt the aggressive
growth of cancer cells. The small-molecule
inhibitor, called JQ1—after Jun Qi, the
chemist who made the discovery—works
by suppressing a protein (bromo-
domain-containing 4, or Brd4) necessary
for the expression of the Myc regulator
gene. It is a mutated Myc gene that is
believed to be at the root of many can-
cers. Without Brd4, Myc remains inactive.
Inhibiting Myc could be part of the key to
successful cancer treatments.

With the cells from an affected patient,
Bradner’s group successfully grew the
cancer in mice and discovered that the
mice with the cancer who received the
compound lived, while the mice with the
cancer who didn’t receive the compound
rapidly perished.

Instead of operating in secrecy and guarding
their work, Bradner’s group shared it. They
simply started mailing it to friends. They
sent it to Oxford crystallographers, who sent
back an informative picture that helped Dr.
Bradners team to understand better how the
small-molecule inhibitor works so potently
against Brd4.

They mailed samples to 40 labs in the US
and 30 more in Europe, encouraging these
labs to use it, build upon it, and share
their findings in return. As a result of this
open source approach, Dr Bradner’s team
has learned—in less than a year—that
JQ1 small-molecule inhibitor prevents
the growth of leukemia, making affected
cells behave like normal white blood cells.
Another group reported back that multiple
myeloma cells respond dramatically to
JQ1. Still another found that the inhibitor
prevents adipose cells from storing fat, thus
preventing fatty liver disease.

Bradner has published his findings. He
has released the chemical identity of the
compound, told researchers how to make it,
and even offered to provide free samples to
anyone in the medical research community.
(If you’re a researcher who’d like a sample
of the JQ1 molecule, you can even contact
Bradner’s Lab via twitter @jaybradner6.)

Bradner feels his early successes are due not
only to the science, but also to the strategy.
Using an open source approach, sharing
the information about this molecule, and
crowd-sourcing the research and the testing
illustrates the opportunities that an open
methodology can bring to the difficult chal-
lenges of medical research and prototype
drug discovery.

In his recently released TED talk video,
Dr. Bradner explains that he firmly believes
that making a drug prototype freely available
among researchers will help accelerate the
delivery of effective cancer drugs to
affected patients.

With more practice—and more familiarity
with each other and this kind of collabora-
tive research—scientists can break large,
complex, time-expensive projects into
smaller, achievable portions. By spreading

An open world: Stories from the open source community38

1.	� http://www.who.int/mediacentre/news/releas-
es/2003/pr27/en/

2.	� www.ornl.gov/sci/techresources/Human_Ge-
nome/project/about.shtml

3.	� www.hms.harvard.edu/hms/home.asp

4.	 www.bradner.dfci.harvard.edu/

5.	 www.dana-farber.org/

6.	 https://twitter.com/jaybradner

out those small tasks among many groups,
much more work can be accomplished in a
vastly reduced amount of time.

Using the old research models, Bradner’s
team might have learned that JQ1 affects
AML cells in the first year. But it might have
been next year before they got to leukemia,
and years after that before they realized it
also could affect fatty liver. How many years
do you think the old approach adds to the
development of drugs we need today?

It is time to seriously consider a different
model for scientific research–one that di-
rectly engages and benefits society, encour-
ages open access and the free exchange of
scientific information. The benefit to patients
would be enormous. 

39History of open source in government

Government

	An open world:
Stories from the
open source community

An open world: Stories from the open source community40

It is difficult to imagine the Federal govern-
ment moving in one well-coordinated direc-
tion on any matter, and so it has been with
the adoption of open source software. Some
agencies were early adopters, especially the
academic and research communities. As it
did in universities, open source adoption in
the US government originated in research
settings, where sharing and collaboration
were already part of the culture of pedagogy.
In this way, the government had been using
and creating open source software even
before it was called “open source.” Other
agencies and departments have been more
conservative, for a variety of reasons, and
are only just now bringing open source
software into their operations. With

this in mind, the history of open source in
the US government is best understood as a
series of individual stories that have collec-
tively led to the pervasive adoption of open
source we see today.

It was in 1997 that open source as an enter-
prise computing trend emerged, and the US
government was there. While Eric Raymond
was writing his seminal treatise on open
source, “The Cathedral and the Bazaar1,” a
Major in the US Air Force named Justin
Seiferth published “Intranet Hallways Sys-
tems Based on Linux2” in the Linux Gazette.
This article described a simple web-based
explorer for Windows file servers built on
the Linux operating system. This may be
the first public acknowledgment of the US

History of
open source in
government
Gunnar Hellekson (originally published May 2012)

41History of open source in government

Government’s use of open source software
as we know it today.

For the next several years, advocates in the
private sector and cautious staff in govern-
ment began to engage the questions that
still confront open source today: Is it ready?
Is it secure? How do we use it? In 1999,
Mitch Stoltz of NetAction wrote the first
persuasive essay on the topic, “The Case
for Government Promotion of Open Source
Software3.” Stoltz invokes many arguments
that are still being used today: lower cost,
increased flexibility, and better security.
That same year, the President’s National
Coordinator for Security, Infrastructure
Protection, and Counter-Terrorism convened
a multi-agency working group to produce
“Open Source Code and the Security of
Federal Systems.” That report is the first
official study of open source by the federal
government.

While at the Air Command and Staff College,
Major Seiferth returns to our history again,
this time publishing a research report on the
potential benefits of open source specifically
in the DOD. Seiferth notes ironically that the
US Government is at once reluctant to use
open source, and a great creator of open
source projects4:

“Within the Department of Defense, the National
Laboratories and Defense Advanced Research
Agency have been the most visible users and
producers of open licensed systems. They’ve
released such advances as the original firewall
and network security toolkits. As a more recent
example, within the last year the National Air and
Space Agency has debuted several inexpen-
sive supercomputers. Open licensed operating
systems and applications allowed the scaling of
inexpensive pentium-based machines into an in-
tegrated hardware/software system. In addition
to being inexpensive, these machines are among
the most powerful available.”

Seiferth, like Stoltz, makes a number of
familiar arguments for open source, but his
greatest insight is that open source is “Com-
mercial Off-the-Shelf” (COTS) software. This
is significant, because it means that open
source would be able to use the existing
policy and regulations that had already been
created for software more generally, rather
than being treated as a special case and
thus hampering its adoption. This will later
become the explicit policy of the Office of
Management and Budget, as well as the
Department of Defense.

The very next year brings an explosion of
open source activity in government. In the
private sector, IBM announced that they are
investing one billion dollars5 in the Linux
project. The Open Source Software Institute6
was founded to aid the adoption of open
source in the Federal government.

Meanwhile, government adoption continues
apace. We begin to see the procurement ap-
paratus wrestle with open source licensing
in procurements. The US Air Force Scien-
tific Advisory Board’s “Ensuring Successful
Implementation of Commercial Items in Air
Force Systems7” is the first procurement
guidance to explicitly mention open source.

Some agencies aren’t waiting, though. The
National Security Agency — to the aston-
ishment of its peers and the open source
community – releases SELinux8, which
provided a set of strong security controls to
the Linux operating system. In doing so, the
NSA was taking technology that had been
useful to a very small set of customers, and
was therefore very expensive, and made
it freely available to the general public. In-
novation quickened, the software improved,
and SELinux is still used in Linux today. Most
recently, SELinux was ported to the Android
system9, where it provides mobile phone us-

An open world: Stories from the open source community42

ers protections against hostile applications.
This wasn’t the first time the US government
has released software, but it made head-
lines because it was an implicit endorsement
of the open source process by arguably the
most security-conscious intelligence agency.

This flurry of activity continues into 2001,
with MITRE releasing “Making the Busi-
ness Case for Open Source Software10.”
This document, the most comprehensive
treatment of open source to that point, was
published as part of the larger “Open Source
Software in Military Systems” study which
the US Army had commissioned from MITRE.
The report concludes: “Open source will ben-
efit the government by improving interoper-
ability, long term access to data, and the
ability to incorporate new technology.” Here,
we see the US Army, who is later to become
one of the largest open source users in the
world, taking its first exploratory steps.

The next major milestone is in 2003, with
the release of the “Stenbit Memo11.” On May
28, the DOD CIO John Stenbit released the
first DOD-wide guidance on open source
software, which implicitly permits its acqui-
sition, development, and use. Meanwhile,
the Army begins to deploy the “Blue Force
Tracker,” running on open source software,
to over 80,000 tactical vehicles. Famously,
General Nicholas Justice proclaims, “When
we rolled into Baghdad, we did it using
open source.” Nine months later, in July of
2004, the OMB issues a memo similar to
the Stenbit Memo that covers the govern-
ment as a whole. At approximately the
same time, NASA releases the very popular
World Wind12 geospatial visualization project
under the newly-minted “NASA Open Source
Agreement13.” Six months later, Red Hat, the
world’s largest open source company at the
time, creates a US Government division14 and

the first Government Open Source Confer-
ence (GOSCON)15 is held in Portland, Oregon.

In 2006, Sue Peyton, the Air Force Assistant
Secretary of Defense for Acquisition, com-
missioned the “Open Technology Devel-
opment Roadmap16,” which goes beyond
the simple benefits of open source, and
describes how it can be put to productive
use in the context of the DOD’s Net-Centric
doctrine, which was in fashion at the time.
This is the first effort to align the principles
of open source with an overall agency
strategy, demonstrating how savvy open
source advocates inside the government
have become.

In 2007, the US Navy commissioned Ray-
theon, IBM, and Red Hat to add “real-time”
features to the Linux kernel17, which it
required for the new destroyer it was build-
ing. Significantly, the Navy ensured that the
software is released into the open source
community. Shortly thereafter, the US Navy
CIO Robert Carey releases the Navy Open
Source Memo18, which explicitly classifies
open source as COTS software. This is a
significant change in tone from the Stenbit
memo and OMB memos of 2004, which only
implicitly provide this same guidance.

Open source use subsequently explodes. By
September of 2008, the Microsoft-funded
Open Source Census19 was reporting that
open source use in government was higher
than any other industry. The Federal Open
Source Alliance’s Federal Open Source Refer-
endum20 study reported that, 71% of agency
executives believed they could benefit from
open source and 58% said they were likely
to consider open source.

The Obama Administration’s first act on tak-
ing office was to issue the Open Government
Memo21, which articulated a general policy of

43History of open source in government

“transparency, collaboration, and participa-
tion.” Subsequent agency initiatives prom-
inently featured open source software as a
means to achieve those goals. Open source
policies began to pour out of governments
at the federal, state and local level. NASA,
in particular, made open source software
and the open source development process a
cornerstone of their open government plan22.
In the private sector, Open Source for Amer-
ica23 was founded. This coalition of industry,
advocates, and individuals is meant to be
a central resource for advocates of open
source software in government. That August,
Macon Phillips, the White House New Media
Director who would later release portions
of the software for whitehouse.gov, called
open source “…the most concrete form of
civic participation24.” Clearly, open source
and open government became inextricably
related.

In October of 2009, the “DOD Open Source
Memo25” is released by David Wennergren,
the DOD CIO. This memo got headlines
around the world, and remains the single
most influential government policy docu-
ment on open source today. The memo itself
is simple, and following the Navy’s declara-
tion two years earlier, reminds procurement
officials that open source software is COTS.
The appendices to the memo, however, go
into much more detail about the poten-
tial advantages and risks of open source
software. The memo specifically encourages
the DOD to take advantage of its ability to
modify software to suit a mission’s need.

Later in 2009, CENDI, an organization of
government managers, issues a FAQ26 on
copyright and open source to help agency
lawyers understand open source licensing
and the sometimes confusing intellectual
property questions that they pose. A few

months later, for the first time since 2004,
OMB refreshes its open source guidance
with the “Technology Neutrality27” memo,
reminding agencies that competition in
software is important, and that they are for-
bidden from discriminating against software
based on its development method. Once this
memo was published, most of the barriers
to open source adoption had been dimin-
ished or eliminated in the US government.

Unburdened, open source continued its
growth in 2011. Sue Peyton’s Open Technol-
ogy Development Roadmap from 2006 re-
ceives a “Lessons Learned28” sequel, which
makes recommendations to DOD programs
interested in releasing their own software.
Eben Moglen, one of the most prominent
open source lawyers in the country, and
head of the Software Freedom Law Center29,
releases “Government Computer Software
Acquisition and the GNU General Public
License30,” which explains the provisions
of that very popular open source license
in the context of government procure-
ment regulations. Clearly, the government’s
understanding of open source had grown
more sophisticated since its first tentative
forays a decade before. A survey conducted
by Lockheed Martin31 at this time found that
69% of government contractors and 40%
of federal agency respondents were already
using open source. The survey also found
that 66% of all respondents said that they
would be using more open source in the
next 12-18 months.

With this increased comfort, 2011 also saw
the release of more open source software
from the government than ever before.
The White House released portions of the
code for whitehouse.gov, the code for the
Federal CIO’s IT Dashboard, and the data.
gov platform. At the end of 2011, the Federal

An open world: Stories from the open source community44

CIO announced a draft “Shared First” policy,
which mandates re-use and sharing of IT
resources amongst civilian agencies, and
specifically mentions that agencies should
collaborate on software development32. Also,
NASA releases code.nasa.gov, a landmark
project to centralize all the source code
released by NASA in one citizen-friendly
web site33.

So we see the adoption of open source in
the Federal government as an evolution: the
first furtive steps in the late 1990s and early
2000s, manifested in persuasive essays and
studies. From there, certain organizations
like NASA and the Army take leadership
roles in open source adoptions. From 2003
to 2009, a series of policies institutionalize
its use throughout the government. By the
close of the first decade, the White House,
NASA, the Office of Management and
Budget, and other agencies are not just us-
ing open source, but creating and releasing
open source software of their own.

Did I miss a major event? A major code re-
lease? Let me know in the comments.

[This is a writeup I did as a companion to
the History of Open Source in Government
Timeline34. Karl Fogel35 and I will be presenting
more findings36 from the timeline at OSCON37
this year.]

1.	� www.catb.org/%7Eesr/writings/homesteading/
cathedral-bazaar/

2.	 www.linuxgazette.net/issue19/hallways.html

3.	� www.netaction.org/opensrc/oss-report.html

4.	� www.dtic.mil/cgi-bin/GetTRDoc?Loca-
tion=U2&doc=GetTRDoc.pdf&AD=ADA398898

5.	 www.news.cnet.com/2100-1001-249750.html

6.	 www.oss-institute.org/

7.	� www.dtic.mil/cgi-bin/GetTRDoc?Loca-
tion=U2&doc=GetTRDoc.pdf&AD=ADA411926

8.	 www.selinuxproject.org/

9.	 www.selinuxproject.org/page/SEAndroid

10.	�www.mitre.org/work/tech_papers/tech_
papers_01/kenwood_software/kenwood_
software.pdf

11.	� www.terrybollinger.com/stenbitmemo/stenbitme-
mo_png/index.html

12.	www.worldwind.arc.nasa.gov/

13.	www.opensource.gsfc.nasa.gov/nosa.php

14.	� www.gcn.com/articles/2005/01/21/red-hat-
pushes-for-linux-in-federal-market.aspx

15.	www.goscon.org/

16.	� www.acq.osd.mil/jctd/articles/OTDRoad
mapFinal.pdf

17.	� www-03.ibm.com/press/us/en/pressre-
lease/21033.wss

18. www.doncio.navy.mil/ContentView.aspx?ID=312

19.	� www.lmaugustin.typepad.com/lma/2008/09/
open-source-census-more-numbers-on-open-
source-adoption.html

20.	�www.blogs.the451group.com/open-

45History of open source in government

source/2008/10/22/goscon-gives-government-
good-open-source-ideas/

21.	� www.whitehouse.gov/the_press_office/Transpar-
encyandOpenGovernment

22.	www.nasa.gov/open/plan/

23.	www.opensourceforamerica.org/

24.	�www.dailymotion.com/video/xgh1i3_obama-s-
new-media-director-backs-open-source-govern-
ment_news

25.	�dodcio.defense.gov/Portals/0/Documents/FOS-
S/2009OSS.pdf

26.	�www.cendi.gov/publications/09-1FAQ_Open-
SourceSoftware_FINAL_110109.pdf

27.	� www.cio.gov/documents/Technology-
Neutrality.pdf

28.	�dodcio.defense.gov/Portals/0/Documents/FOSS/

OTD-lessons-learned-military-signed.pdf

29.	www.softwarefreedom.org/

30.	�www.acc.dau.mil/adl/en-US/475584/file/60698/
OSS%20White%20Paper%2010-11.pdf

31.	� www.marketconnectionsinc.com/Reports/inter-
section-of-open-source-and-the-cloud.html

32.	�www.cio.gov/documents/Shared_Services_
Strategy.pdf

33.	�www.code.nasa.gov/

34.	�www.atechnologyjobisnoexcuse.com/2011/12/
building-a-timeline-of-open-source-in-the-us-
government/

35.�	www.red-bean.com/kfogel/

36.	�www.atechnologyjobisnoexcuse.com/event/
oscon-2012/

37.	www.oscon.com/

An open world: Stories from the open source community46

The battle for open standards in Europe

Today, people and groups around the world
are celebrating Document Freedom Day1. This
is an international day to raise awareness of
Open Standards and free document formats.
As the event takes place for the third time,
the previous focus on the OpenDocument
Format2 (ODF) is broadening to include other
free formats such as Ogg Vorbis, and Open
Standards3 in general.

Standards have the reputation of being a dry
topic. But Document Freedom Day is inspir-
ing lots of passion and creativity around
the world. Volunteer groups from the Free
Software scene are using this international
day to draw their communities’ attention to a

topic that most people outside the technol-
ogy world hardly ever think about.

The campaign is coordinated by the Free
Software Foundation Europe4, but the
passion and effort in cities around the world
are local. In Romania’s capital, Bucharest, a
group of activists visited5 a number of gov-
ernment buildings, each time telling the au-
thorities that “I can’t read your documents”.
In South Africa, the Department of Arts and
Culture is holding a celebratory hour. In
Buenos Aires, Argentina, eight organizations
are organizing6 an evening of information
and discussion about Open Standards. In
many countries, as in Vietnam, local groups
are setting up information campaigns in
universities and elsewhere.

Document
Freedom Day:
Passion and politics
Karsten Gerloff (originally published March 2010)

47Document Freedom Day: Passion and politics

Cakes appear to be a particular favourite.
FSFE groups are awarding two of them to
German and Austrian radio stations that
offer their streams in Ogg Vorbis. A third
one goes to the Slovenian Supreme Court,
which has adopted ODF as its default
document format.

Spreading, but not without a fight

Over the past years, numerous countries
[pdf]7 have adopted policies on Open
Standards. The Netherlands8 lead the way,
by mandating that public bodies use Free
Software and Open Standards from May
2008. Many others have followed, such as
South Africa, Japan, Brazil and a number of
European countries.

Denmark9 is the latest nation to join the
group, requiring its public bodies to start
using ODF for its documents from April 2011.
There are differences between all these pol-
icies, and they are being implemented with
varying degrees of success. But the direction
is clear: The public sector is moving to Open
Standards. Not without a fight, though.

Europe in the lead

It is striking that out of 11 out of 18 countries
that have adopted ODF for their public sector
(according to the ODF Alliance) are in Europe.
While multiple factors are involved here,
such as relatively high market shares for Free
Software, one element is crucial.

In 2004, the European Commission issued
a recommendation known as the European
Interoperability Framework10 (EIF). The docu-
ment’s stated goal is to promote interopera-
bility between public bodies in Europe, with a
view to delivering “pan-European eGovern-
ment services”.The EIF’s means of choice are
Open Standards and Free Software. Crucially,

the text contained a relatively strong defini-
tion of what an Open Standard is.

The European Commission complemented
the EIF recommendation with the OSOR11
project. The not-so-snappily titled “Open
Source Observatory and Repository” quickly
became a central platform for public bodies
across Europe to learn from each other about
their experiences with Free Software and
Open Standards. The portal also allows public
bodies to upload and share Free Software
which they have developed themselves.

[Disclosure: From late 2006 to mid-2009, I
worked for a contractor of the OSOR project,
UNU-MERIT12. One of my tasks with OSOR
was to write case studies about the use of
Free Software and Open Standards in the
European public sector.]

Diverging views in the European
Commission

Beyond the OSOR project, different parts of
the European Commission have very different
views on Open Standards. The Informatics
department, responsible for the Commis-
sion’s internal IT systems, has long relied on
framework contracts with Microsoft. In an
ironic twist, the unit running the OSOR proj-
ect is currently a part of this department.

On the other hand, the (now former) compe-
tition Commissioner Neelie Kroes went out of
her way to highlight the importance of Open
Standards. During an event on June 10, 2008
she remarked13:

As purchasers, we need to be smart when we buy
technology. We need to be aware of the long term
costs of lock-in: you are often locked-in to subse-
quent generations of that technology. There can
also be spill-over effects where you get locked in
to other products and services provided by that
vendor. That is just bad purchasing.

An open world: Stories from the open source community48

She added:

But there is more to this than ensuring our
commercial decisions are taken in full knowledge
of their long term effects. There is a democratic
issue as well.

[…]

I know a smart business decision when I see
one—choosing open standards is a very smart
business decision indeed.

Right ahead of Document Freedom Day14,
those tensions are coming to a head15. The
Commission is developing two very different
draft documents that will have a profound
effect on the use and spread of Open
Standards and Free Software in Europe, and
possibly elsewhere.

The European Interoperability Framework:
Revised into oblivion

The European Interoperability Framework
(EIF) is currently being revised. The process
to update this key document started in
2006, with a public consultation held in the
summer of 2008. The document which the
EC presented for comments still contained
a strong definition of Open Standards, and
gave Free Software a crucial role in providing
interoperability in the public sector.

After the public consultation, EIF version
2 disappeared into the dark interior of the
EC. Since then, two drafts have leaked: One
in November 2009, and one in mid-March
2010. Astonishingly, these drafts no longer
contain a definition of Open Standards. Free
Software as an enabler of interoperability
has virtually disappeared. This reflects the
comments made by the Business Software
Alliance16, a Microsoft-backed lobby group.
FSFE maintains a comparison page17, show-
ing how key parts of the text have evolved
since the consultation process.

FSFE and other groups have highlighted18
both the substantial problems of the text,

and the lack of transparency of the process
in which it was created. Confronted with the
latest draft, we are now asking19 the Com-
mission to go back to the drawing board, and
start over based on the consultation draft
from Summer 2008. In its present form, the
text would only cement the status quo.

The Digital Agenda: Standardization
power struggle

The second document at the center of
current debates is the “Digital Agenda.” This
is a relatively short text, setting out the
Commission’s policy on all things digital
for the coming five years. It is prepared by
the Information Society department, which
Neelie Kroes is now heading. Though the
document hasn’t been published officially,
the parts concerning Open Standards are
available here20.

According to this Digital Agenda, the Europe-
an Commission would “issue a recommenda-
tion to streamline the use of Open Standards
in public services and public procurement”. It
would also “[u]pdate the European Interop-
erability Framework to promote an open
approach to technology and interoperability”.

Both things would be very good for
European citizens and their public authori-
ties, since they would increase the use of
Open Standards and, as a consequence,
Free Software. So it is no surprise that there
is now a fierce lobbying battle raging around
the text, since it would make life a bit more
difficult for the companies that currently
dominate the software market with their
proprietary applications.

Yet the Digital Agenda is under attack from
another angle as well. It calls for a reform of
the European standardization system, so that
standards coming out of ICT fora and consor-
tia such as OASIS would be recognized. This
sits very badly with those departments of
the EC that are currently in charge of stan-

49Document Freedom Day: Passion and politics

dardization: Enterprise and Internal Market.
To them, this agenda threatens to take away
part of their portfolio and power. Incidentally,
those two departments also don’t think that
recognizing standards prepared in ICT fora
and consortia is a good idea.

These issues are moving quickly, with new
developments and rumors coming out of
the European Commission almost every day.
Together with other groups, FSFE is working
hard to preserve the Digital Agenda’s push
for Open Standards.

DFD worldwide—you’re not alone

All this shows that the gains that Open
Standards have made can’t be taken for
granted. Lobbyists for proprietary software
companies are chipping away at them every
day, exploiting internal differences within the
European Commission as they go.

Incidentally, an Italian court ruled yesterday
that public authorities in Italy’s Piedmont
region can legally maintain a preference for
Free Software in their purchasing decisions.
The court considered that such

a requirement refers to a characteristic of
the software, rather than to a specific prod-
uct or technology.

This should give a further boost to public
bodies that want to use Free Software and
Open Standards. It should also remove an
obstacle for those that are interested, but
haven’t yet made the jump.

In this context, Document Freedom Day21 is a
day of hope. It shows that people around the
world are passionate about Open Standards,
Free Software, and the freedom to use tech-
nology as they wish. Governments in Europe
and elsewhere should take note. 

1.	 www.documentfreedom.org/

2.	 www.en.wikipedia.org/wiki/Odf

3.	 www.fsfe.org/projects/os/def.en.html

4.	 www.fsfe.org/

5.	 www.nicubunu.ro/documentfreedomday-2010/

6.	� www..vialibre.org.ar/2010/03/28/dia-mundi-
al-de-los-documentos-libres/#more-5246

7.	� www.odfalliance.org/resources/Adoptions-ODF-
2010-Feb.pdf

8	� www.computerworlduk.com/toolbox/open-
source/open-source-business/news/index.
cfm?newsId=6677

9.	� www.h-online.com/open/news/item/Den-
mark-to-implement-ODF-document-stan-
dard-918962.html

10.	�www.ec.europa.eu/idabc/en/docu-
ment/3473/5585#finalEIF

11.	 www.osor.eu/

12.	www.merit.unu.edu/

13.	� www.europa.eu/rapid/pressReleasesAction.
do?reference=SPEECH/08/317&format=HTM-
L&aged=0&language=EN&guiLanguage=en

14.	www.documentfreedom.org/

15.	� www.h-online.com/open/features/Water-
ing-down-European-standards-966955.html

16	 www.bsa.org/

17.	� www.fsfe.org/projects/os/eifv2.en.html

18.	� www.fsfe.org/news/2009/news-20091127-
01.en.html

19.	 http://blogs.fsfe.org/gerloff/?p=324

20.	�www.davidhammerstein.over-blog.com/arti-
cle-digital-commissioner-kroes-proposes-eu-poli-
cy-of-open-standard-46997444.html

21	 www.documentfreedom.org/

An open world: Stories from the open source community50

Interview: PJ on the beginning, ending, and future of Groklaw
www.cafepress.com/groklaw.154236618

Total victory for open source software in a patent lawsuit
www.opensource.com

Rethinking office design
www. opensource.com

The four capital mistakes of open source
www.flickr.com/photos/dahlstroms/3861945279
www.flickr.com/photos/pinksherbet/4812267249/

All imagery in this booklet is licensed under a Creative Commons Attribution-ShareAlike 3.0
Unported license (CC BY-SA 3.0).

Image credits

Cover image
www.flickr.com/photos/ashleighb77/3708369320/

The day TuxPaint became contagious
www.opensource.com

Introducing students to the world of open source: Day 1
Asheesh Laroia

51Image Credits

Document Freedom Day: Passion and politics
www.documentfreedom.org/Artwork2010

History of open source in government
www.opensource.com

Three unspoken blockers that prevent professors from
teaching open source community participation
http://www.flickr.com/photos/montypython/4074525329/

Open source cancer research
www.flickr.com/photos/cmrf_crumlin/4838073754/
in/photostream/

Join the M revolution—Get your tools
www.opensource.com

Student participation in open source projects
(A professor’s perspective)
www.flickr.com/photos/11755880@N00/3856681802/

Written content is licensed under a Creative Commons
Attribution-ShareAlike 3.0 Unported license (CC BY-SA 3.0).

Download an electronic copy of this book at www.opensource.com/best

