

Open Always Wins

A Michael Tiemann collection
Open Voices, Issue 5
opensource.com

Copyright

Copyright © 2013 Red Hat, Inc. All written content licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Introduction

Linus Pauling famously said “The best way to have a great idea is to have lots of ideas.” This is easier said than done, for many reasons. For me, the foremost reason is that nobody wants to be known for having a dumb idea, so we self-edit. If we self-edit too much, we end up having not a lot of ideas, so having a great idea becomes nearly impossible. A second challenge is creating a space where ideas can combine, coalesce, catalyze, evolve, and, if they are truly great ideas, crystalize. Is that best space an isolated office where the mind of a lone genius can evaluate all and choose correctly the One Best Idea? Or is it better to open up the process to a diverse set of perspectives, up to and including every possible stakeholder in the outcome?

In the book The Wisdom of Crowds, James Surowiecki gives contemporary and compelling examples of problems that are better solved by random groups of people than by experts. Not every crowd beats the experts, and some crowds are provably less intelligent than their least intelligent member, but when properly (self-) selected and organized, the crowd not only beats the experts, it acts more intelligently than its most intelligent member.

Long before Surowiecki began his research into the Wisdom of Crowds, the free software and open source software communities began self-organizing in ways that are validated as best practices by Surowiecki’s research. These communities were built from stakeholders who had a great diversity of opinion, independence from one another, they were highly decentralized, and there was a mechanism for aggregating private judgements and actions into collective decisions and results. Along the way, these communities of “amateurs” proved to be able to write software that delivered results sooner, with fewer defects, that were fixed faster than proprietary approaches.

In 2002, David A. Wheeler published a report that if one were to use cost and productivity averages of the proprietary software development community, it would have cost $1.2B to create a Linux distribution. In 2008, that report was updated by Amanda McPherson, Brian Proffitt, and Ron Hale-Evans of The Linux Foundation to show that the Fedora 9 distribution would have cost $10.8B. Given the capabilities and code base of the latest Linux distributions, I would not be surprised if that number were closer to $25B today. Red Hat has been the most successful open source software company in history, reaching just over $1B in annual revenue in calendar 2012. Its revenues were around $25M when Cygnus and Red Hat started merger discussions in 1999. It’s a fun exercise to imagine how $25B of software value can be created in that context.

According to The Seattle Times, Microsoft spent $10B creating Windows Vista. Most people would agree that (1) Vista gave users nothing they didn’t already have and like in Windows XP, and (2) every penny they spent developing Windows 7 and Windows 8 was to undo the damage they did to themselves with Windows Vista. Merely counting the dollars spent on software is not a valid proxy for estimating the value of software. Indeed, in the case of the Windows platform, there really has been no measurable return on investment (ROI) on their software development investments since 2003. Why is the ROI on Linux so high and the ROI on proprietary software so low? The answer is simple: open always wins.

Every day I have seen examples of the meme “open always wins”, but from time to time I have seen examples that, to me, are teachable moments. They are not only obvious to the reader, but obvious in ways that illuminate the less obvious. These essays are my attempt to capture and crystalize those ideas in ways that others can bring their own perspectives, their own experiences, their own ideas into the mix, thereby transforming those ideas into solutions. I hope you enjoy them,

Michael Tiemann

Integral innovation

(originally published June 2010)

In his keynote speech at the Red Hat Summit in Boston, Red Hat CEO Jim Whitehurst made the case that of the $1.3 trillion USD spent in 2009 on Enterprise IT globally, $500 billion was essentially wasted (due to new project mortality and Version 2.0-itis). Moreover, because the purpose of IT spending is to create value (typically $6-$8 for each $1 of IT spend), the $500 billion waste in enterprise IT spending translates to $3.5 trillion of lost economic value. He goes on to explain that with the right innovations—in software business models, software architectures, software technologies, and applications—we can get full value from the money that's being wasted today, reinforcing the thesis that innovation trumps cost savings.

But then along comes Accenture's Chief Technology Architect Paul Daugherty, and in his keynote he presents a list of the top five reasons that customers choose open source software (which is now up to 78% among their customers):

#1 (76%): better quality than proprietary software.

#5 (54%): lower total cost of ownership.

So which is it? Does innovation trump cost savings? Or does quality trump cost savings?

According to the research of Dr. David Upton, if you practice path-based innovation (also known as continuous innovation, or Kaizen), then quality and innovation are one and the same thing. Or, mathematically, innovation is the integral of quality improvement over time. Unfortunately, Dr. Upton's research also shows that most executive compensation structures do not reward disciplined continuous improvement, but rather efforts that are typically "win big/lose big". And perversely, they tend to reward upfront those who place the bets rather than those who are around when the bet can actually be judged. This encourages executives to make innovation a risky business when it could be a reliable engine of sustainable value creation. And it conditions those in the trenches to fear and loathe the Next Big Thing, especially when it has an executive sponsor. This in turn leads to the worst-case scenario of IT departments conservatively protecting systems that were never appropriate in the first place. But there is a better way.

In his keynote, Jim correctly points out that modular, layered architectures are much more susceptible to incremental improvement. Not only do many eyes make all bugs shallow, but many hands make the burden light. Highly modular systems encourage massive participation, and the sum total of many, many small improvements can be seen as a large improvement indeed. This was made absolutely clear in Boston this week as Red Hat explained its Cloud Foundations platform—a single large change enabled by thousands of smaller changes enabled by yet thousands more smaller changes. Red Hat's engineering model embraces incremental innovation, and the integral across all the communities who contribute is simply mind-blowing.

But when we break down these innovations into their constituent elements, what we often find is that at the finest level of detail, there is no distinction between the atomic change from which the innovation is derived and a very specific, very concrete improvement to the quality of the system. Indeed, it is better (and more accurate) to think of quality not as fixing something that is broken (as if it will never need to be touched again), but rather making an adaptation that is an improvement. Of course it is important to eliminate defects in order to build a quality product, but it is equally important to eliminate inflexible or wrong assumptions that reduce fitness in future contexts. When everybody is able to make such adaptations, the result is nothing short of transformation.

I've spent a lot of time in the free/open source software community: nearly 10 years as a principal developer of the GNU C and C++ compilers and the GNU debugger, and more than 10 years since teaching others from my experiences. One of the most profound insights I've gained about the relationship between open source software development and software quality came from assimilating an analysis published in the paper Two case studies of open source software development: Apache and Mozilla, published in TOSEM, July 2002. For a full explanation, please see this transcript of a keynote speech I gave in 2009. For the purposes of this article, I want to focus on the fact that the paper counted 388 different contributors to Apache, with Developer #1 doing 20% of everything and Developer #388 making a change so insignificant that it could not really be seen in the graphs. The paper explains that the open source codes studied in the paper produced deliverables faster, with fewer bugs, that were themselves fixed faster, than comparable proprietary software also studied. And the paper observes that because open source software like Apache did not restrict participation, bugs that might not have made it to the MUSTFIX list where developer resources are scarce (as surely they are when every developer must be paid out of profits) can still be fixed by some developer somewhere in the world who cares about that particular issue. And so I thought I accepted what the paper explained, and what I knew from my own experience, that open source was far and away the best way to clean up all the corner cases that inevitably arise in complex software projects. Hooray for continuous improvement! But that was only half the story.

After teaching what this paper taught a few dozen times as a part of New Hire Orientation at Red Hat, a new insight came to me, which is the flip-side of the story. Imagine you have your little world of code you maintain, and you find one day that something is wrong. You search and search, and you conclude that the problem is not with the code you've written, but lies beyond, in some library or application you did not write. You might find the problem is with Apache, and by making that determination, you could verify your hypothesis by looking at the code, observing the behavior, and if you were right, you could become developer #389 by fixing that defect, as so many have before you. But suppose instead you find the problem lies in some proprietary software. That is where your ability to improve the system ends. Moreover, you still have a problem. WTF?! (What's The Fix?!)

You can document the problem, making customers suspicious of your own software, or you can place a work-around in your own code. The work-around is not a "correct" fix, but it might give you the behavior you need, and now instead of fixing a problem, you've actually created a second problem which, for the time being, cancels out the first, maybe. You cannot know for sure because you cannot see the original problem, only the shadows that it casts. Now imagine there are hundreds of modules with hundreds of opportunities for fixes which instead generate work-arounds. It is easy to see that there could be hundreds of times the number of defects or potential defects lurking in the system when, if the source code were available, there need be none at all!

Thus, open source not only permits developers to fix the bugs where they lie, but also a strong incentive (and culture) to not pollute ones own work just because a bug lies in another module. The cumulative result has been measured quality differences of 100x or more compared with proprietary software as measured by Coverity. Such a difference in quality is noticable. And empowering. And encouraging to not only fix what is wrong, but to improve what could be better. And all of this functions as an encouragement to raise quality, and innovation to the point where IT delivers on its real promise: creating value.

Think laterally

(originally published May 2010)

When Thomas Friedman enumerated 10 "flattening forces" in his book The World Is Flat, he declared that force #4, Open Source, was the most powerful and disruptive of all. New discoveries in nature suggest that Friedman's assessment may be more profound (and more consistent) than even he imagined.

Friedman notes that open source engenders a feature rarely seen in previous publishing endeavors: uploading. Traditionally, publishing followed a waterfall model: some marketable idea or expression would find some capital partner and the two would join to create a work that could be purchased or otherwise consumed by a downstream market. Ideas flowed in one direction, and capital returns would flow in the opposite direction.

Open source created a bi-directional flow in which the market itself could make greater intellectual contributions than any of the original principals. Moreover, this could often be accomplished without any particular capital partner. Whereas piracy was seen as the scourge of the private property publisher, ubiquitous distribution was a necessary prerequisite for open source participation.

Traditional publishers and capitalists wrongly claim that open source turns the basis of intellectual property on its head, but I disagree. I think it merely turns them sideways.

Long before Friedman, Alexis de Tocqueville was writing about another flattening of the world: American Democracy. He seized upon the idea that Democracy and Equality were profoundly related concepts, the former operating in a world of politics and the latter observable in the natural world.

By this device he was able to instantly perceive how America, unshackled from central controls and authority, could create the most favorable conditions for innovation:

When a private individual mediates an undertaking, however directly connected it may be with the welfare of society, he never thinks of soliciting the cooperation of the Government, but he publishes his plan, offers to execute it himself, courts the assistance of other individuals, and struggles manfully against all obstacles. Undoubtedly he is often less successful than the State might have been in his position; but in the end the sum of these private undertakings far exceeds all that the Government could have done.

Not only does this sound like a great description of open source software vs. proprietary software, but it actually describes quite accurately my own experience starting the world's first open source software company. (And though it may surprise some, I take great pride in the fact that the Government is now embracing open source just as quickly as it can—the best ideas are those that are good for all, not just some.)

It also explains the relative benefit of horizontal interaction vs. vertical integration. (To read more about this, check out The Only Sustainable Edge which really does that subject justice.)

But among the dozens of subjects he considers and the hundreds of insights that illuminate them, he, like Friedman, holds up one as more significant than all the rest: The Law of Descent (or, in this translation, the Law of Inheritance):

But the law of inheritance was the last step to equality. I am surprised that ancient and modern jurists have not attributed to this law a greater influence on human affairs. It is true that these laws belong to civil affairs; but they ought, nevertheless, to be placed at the head of all political institutions; for they exercise an incredible influence upon the social state of a people, while political laws show only what this state already is. They have, moreover, a sure and uniform manner of operating upon society, affecting, as it were, generations yet unborn. Through their means man acquires a kind of preternatural power over the future lot of his fellow creatures. When the legislator has once regulated the law of inheritance, he may rest from his labor. The machine once put in motion will go on for ages, and advance, as if self-guided, towards a point indicated beforehand. When framed in a particular manner, this law unites, draws together, and vests property and power in a few hands; it causes an aristocracy, so to speak, to spring out of the ground. If formed on opposite principles, its action is still more rapid; it divides, distributes, and disperses both property and power. Alarmed by the rapidity of its progress, those who despair of arresting its motion endeavor at least to obstruct it by difficulties and impediments. They vainly seek to counteract its effect by contrary efforts; but it shatters and reduces to powder every obstacle, until we can no longer see anything but a moving and impalpable cloud of dust, which signals the coming of the Democracy.

de Tocqueville properly predicts that the tendency of proprietary software, which tends to be treated as indivisible property, is to create at least aristocracies, and in degenerate cases, monopolies. And his writing is strangely prescient about open source software as well, but let me pick that up at the end.

There is one more writer I must invoke before introducing the actual subject of this article, and that is Charles Darwin. Darwin's theory of evolution is a staggering contribution to science. Read naïvely, the theory predicts the survival of the fittest. As such it is no more insightful than the economic theory that says "buy low, sell high."

Read more deeply, the theory is based upon the evidence of the survival of the most adaptable, and that theory has proven not only durable in the community of life sciences, but in virtually every field in which competition and risk over time play a role, i.e., virtually every human endeavor. Our fascination with fitness likely comes from the fact that it is so easily (and instantly) measured. The study of adaptability takes time. But it can also lead to much deeper insights.

Consider the evolution of the eye. Darwin considered this at once to be "absurd in the highest possible degree" and yet he wrote:

...if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist; if further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real.

And as far as the fossil record can tell us, once the basis of photoreceptivity appeared, then from that origin it has evolved independently at least 50-100 times. In that regard possession of this feature follows the law of inheritance in that if your parents had eyes, you probably do, too. But the advantage of this feature cannot be determined by examining the feature itself: The human eye, which from a design perspective is "built backwards and upside-down" compared with the elegant design of the eye of the octopus, nevertheless confers a degree of adaptability that makes irrelevant the details of that unfortunate design.

But now we know that genetic advantages are not only inherited. And they are not only conferred by genetic engineering. Consider Elysia chlorotica:

[image: graphics1]

(Photo credit: Nicholas E. Curtis and Ray Martinez)

This sea slug discovered in the waters of the Atlantic ocean may be one of the most dramatic examples of lateral gene transfer. It appears that rather than relying on natural selection of random mutations of its inherited genetic code to achieve greater fitness, somewhere along the line Elysia chlorotica went from shepherding algae as a captive food source (symbiosis) to incorporating the gene psbO into its own DNA, thereby allowing it to integrate a photosynthetic process based on chloroplasts without any algae present. Now a "solar-powered sea slug", Elysia chlorotica can feed itself for almost a year just by laying about in the sun.

Lateral gene transfer is understood to be have been fairly common among very simple single-celled organisms, and the more closely we examine various genomes, the more we see that there is much more to evolution than stepwise refinement of inherited wealth.

In the world of open source, on example of such lateral transfer has been the development of GTK (now GTK+). Started initially as a toolkit for the GNU Image Manipulation Program (GIMP), GTK+ now supports dozens of desktop environments, window managers, and applications. Many other open source technologies have been born in one context, refactored for use in other contexts, broken out as stand-alone projects, and then reincorporated in yet new programs for new purposes.

To return briefly to de Tocqueville's vision, recall:

They vainly seek to counteract its effect by contrary efforts; but it shatters and reduces to powder every obstacle, until we can no longer see anything but a moving and impalpable cloud of dust, which signals the coming of the Democracy.

Whereas proprietary software tends to remain monolithic, in part because none of its constituent elements have any independent value whatsoever if broken apart, modular open source systems transcend the logic of partition and fragmentation. One thousand people can take copies of Linux source code and yet there is still a complete copy for the original developer and yet another copy for the 1,001st who wants a copy.

All this copying does not dilute the strength of Linux, but by contrast only makes it stronger and more valuable in the marketplace. This is the effect that a share-alike license like the GPL provides to Linux and all who follow its prescription of equality. And today we see the unstoppable growth and insatiable appetite for open source in the enterprise. Could it be that de Tocqueville's logic properly predicted the advent and effect of open source cloud computing?

Back to the main topic at hand...

Mathematically speaking, the combinatorial possibilities of lateral evolution between multiple domains far exceeds what can be supported by restricting evolution to only that which can occur in a single domain.

Moreover, the adaptive potential of such cross-pollination must be far superior than any approach that attempts to adapt whole systems to work only with other whole systems, even when such whole systems follow rigorous interoperabilty guidelines.

Suddenly it becomes obvious that when the world is flat, when evolutionary innovation can take lateral pathways, when we have the legal, technical, and operational freedom to adopt the most sensible approaches of the best designs, regardless of their ancestry—or our own—then we see the kind of adaptability that ensures its own survival.

And we see that those who don't enjoy that kind of adaptability heading one step closer to extinction.

GPL for artificial life?

(originally published May 2010)

The Economist is right on top of the story of the first fully synthetic life-form. For those of you who may have missed the announcement last week, Craig Venter and Hamilton Smith, the two American biologists who unravelled the first DNA sequence of a living organism (a bacterium) in 1995, have pushed the envelope again, demonstrating the first successful boot-up of a synthetic bacterium. Editors at the Economist argue that the only sensible way to protect ourselves from such creations is to require that the DNA sequences be open source. It is a profound insight.

It would not be the first time that open source saved humanity from Ventner's creative genius. I don't want to take anything away from Ventner as a talented and creative technician—he has solved a number of very tricky problems, and in so doing, has advanced the frontiers of human knowledge. And while his values might make him among those who worship Ayn Rand, they consistently threaten the rest of us who must live in the real world, with each other and with the consequences of our actions.

There was a time when the US Patent and Trademark Office had no idea what to do with patent applications that merely identified a genomic sequence and declared "it's a machine composed of amino acids that is put together in the following way." The Wikipedia article on the Human Genome Project tells how first the US PTO accepted all manner of random genomic sequences as novel inventions, then limited patents to machines that had a defined purpose, and then in 2000 President Bill Clinton further clarified that the Human Genome itself belonged to the public domain and could not be patented.

That decision was not some fiat decision made by the President, but a nod to the fact that the scientific and open source community, working in concert, did the lion's share of decoding and publishing that genome. By publishing first, we mooted the question of how much of our own DNA Craig Ventner's company should be allowed to own.

But now he's back, and he's built the one thing that sits as an exception to the Gene Patent exclusions: a wholly synthetic lifeform. Does Ventner really want to advance science (which he has done), or is he searching, like Charles Muntz, villain of the PIXAR movie UP, for his ultimate, exclusive patent on life?

We may not know, but Ventner's life forms are now multiplying, and what that may mean for humanity we may not also know. But The Economist argues, and I believe it is a very strong argument, that the only way we can protect ourselves from them is to ensure that we have their source code. We may well need it sooner they we can imagine.

Open source returns integrity to science

(originally published January 2011)

Imagine it is 1912, but that the Titanic is fitted with an underwater radar system. Imagine that it senses an iceberg so large that even the captain can understand that by the law of conservation of momentum, the ship will be stopped in its path. Should the captain use the radar information to inform the decision to alter course, or should the captain ignore it because radar is merely an invention of science therefore prone to exaggeration and false findings?

The New Yorker Magazine has just published an immensely popular article titled "The Truth Wears Off —Is there something wrong with the scientific method?" The article reports several examples of scientific findings that appeared to be significant when first published, but when tested over time, demonstrate weaker and weaker results. Zyprexa is a second-generation anti-depressant that showed great promise in clinical trials in the nineteen-nineties. By 2001, Zyprexa earned more revenue than Prozac, and it remains Eli Lilly's top-selling drug.

According to the article, recent studies of these second-generation anti-depressants show that the therapeutic power of the drugs appears to be steadily waning, down to less than half of that documented in the first trials. It reports that many researchers began to argue that the expensive pharmaceuticals weren’t any better than first-generation antipsychotics, which have been in use since the fifties. And it quotes John Davis, a professor of psychiatry at the University of Illinois at Chicago, as saying “In fact, sometimes they now look even worse." How could such drugs be approved if the FDA is using the scientific method, which requires independent reproducibility of results?

Quoting the article:

But now all sorts of well-established, multiply confirmed findings have started to look increasingly uncertain. It’s as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable. This phenomenon doesn’t yet have an official name, but it’s occurring across a wide range of fields, from psychology to ecology. In the field of medicine, the phenomenon seems extremely widespread, affecting not only antipsychotics but also therapies ranging from cardiac stents to Vitamin E and antidepressants: Davis has a forthcoming analysis demonstrating that the efficacy of antidepressants has gone down as much as threefold in recent decades.

In 2005, a paper was published titled "Why Most Published Research Findings Are False," and it has become that author's most-cited work. If we paradoxically accept its findings as true, what reasonable interpretation should we give to President Obama's inaugural promise to "restore science to its rightful place"? This is a serious question. If we read the science on global climate change, it reads like a radar screen flashing RED ALERT about the impending iceberg of environmental collapse. Should we heed the warnings that more than 95% of all climate science papers report, or should we maintain course, confident that all these predictions are nothing more than statistical aberrations and gamesmanship?

Over the New Year's holiday I had a chance to watch the movie "Fair Game," which is based on Valerie Plame Wilson's book "Fair Game: My Life as a Spy, My Betrayal by the White House". (It also incorporates material from Ambassador Joe Wilson's book "The Politics of Truth: Inside the Lies that Led to War and Betrayed My Wife's CIA Identity".) In that movie, the subject of truth is examined in many contexts. There are the 16 words that George W. Bush uttered during his January 28, 2003 State of the Union address ("The British government has learned that Saddam Hussein recently sought significant quantities of uranium from Africa."), words accepted as true enough to authorize the invasion of Iraq. There is the op-ed piece that Ambassador Wilson wrote on July 6, 2003 ("What I didn't find in Africa"). There is a dramatization of the discussion between CIA and the Office of the Vice President about intelligence and whether the seriousness of a potential scenario (Iraq acquires fissile nuclear material) should be allowed to influence the assessment that such facts are in evidence. Finally, the movie shows how the selective use of source information, without proper process, led to a clearly erroneous assessment of facts regarding Iraq's nuclear capabilities, not to mention the possibility that erroneous decisions were made in light of those facts.

It is estimated that the NIH spends more than $30B/year on medical research, and that the CIA spends more than $40B/year on intelligence activities. If "most published research findings are false," would we all be better off in a pre-scientific world? How are we to make policy and investment decisions, be they question of which armies to raise against rogue nations or which drugs to take against rogue cells?

The New Yorker reports that in a forthcoming paper, Jonathan Schooler recommends the establishment of an open source database, in which researchers are required to outline their planned investigations and document all their results. This is an interesting prospect, especially because of the studies I've read about open source software.

The IT industry spends $1.5T/year knowing full well that $500B/year is being wasted on software and systems that will never make it to production, or if they do, bad software quality will "challenge" them with schedule slips, missing features, and bugs significant enough to interfere with operational capabilities. The #1 reason for choosing open source software in the enterprise is "quality as compared with proprietary software". In a series of studies published by Coverity, open source software has achieved on average (across more than 250 projects, more than 55 million source lines of code (SLOC)) 100x lower defect density than proprietary software. Is any of that true? Or is it just a bunch of scientific nonsense?

I believe that the answers to these questions are among the most important we face today. What is science? What can it know? What can it teach us? How should we make decisions based on that information? I'm excited to discover that others believe that open source, which has been inspired by the scientific method, may yet be called upon to rescue science from those who merely try to confirm pre-conceive hypothesis. Can open source prove itself to be valuable? That would be quite a feat. But honestly, I see no better course.

Open source: The antidote for "too big to fail"

(originally published October 2011)

If you look at the evolution of the IT landscape over the past 30 years, you see two distinct trends: the continued growth of the IT dinosaurs (mainframe computing and mainframe wannabes like Sun) and the emergence of highly modular, adaptable systems, which, by their very process of evolution, not only best suit the current needs, but plant the seeds for the next computer revolution. In the 1980s, modular UNIX systems sowed the seeds for Linux, which in the 1990s sowed the seeds for the rapid spread and adoption of the World Wide Web, which in the 2000s, sowed the seeds for companies like Amazon.com, Google, Facebook, and Twitter to aggregate and disseminate content as never before.

In the old days, when missions were presumed to be fixed, one could perform a fixed evaluation of a system and deem it fit or unfit for service. Today, when any single idea can, overnight, undermine critical infrastructure (Stuxnet), rewrite fundamental security assumptions (Anonymous), and overthrow governments (Wikileaks and the Arab Spring), today's "mission critical" systems are tomorrow's failures of imagination. Today, there are far too many IT systems that, for all intents and purposes, are "too big to fail," and that in and of itself represents a systemic risk that must be addressed.

The history of Google's datacenter (or Facebook's for that matter) is a history of rapid adaptation and unlimited scalability, made possible by modular open source software. What makes these systems "mission critical" is not their sheer size, nor the badges of the people who delivered them, but the fact that the more completely Google and Facebook adapt to what users need today, the more they change what users will want tomorrow. And they have the freedom and the flexibility to evolve their systems accordingly: faster, better, cheaper, forever. Mission adaptation is the new mission critical.

The Fedora project is an exercise in creative destruction: every six months, we identify the single biggest aspect of the project that has become "too big to fail," and we blow it up. We blow up software into more modular components; we blow up processes to create greater autonomy and agility; we blow up governance structures to allow for greater transparency and accountability. We encourage all our participants to fail faster in order to succeed sooner. This approach creates the raw materials that Red Hat uses for its commercial products, including Red Hat Enterprise Linux. The result: in six years of commercial release, the Linux kernel in Red Hat Enterprise Linux 4 has suffered zero critical security failures. In four years of commercial release, the Linux kernel in Red Hat Enterprise Linux 5 has suffered zero critical security failures. We understand from our clients in Ft. Meade that this is the first time they have ever encountered such a trustworthy operating system. Ever.

The Tokyo Stock Exchange used to suffer trade-stopping outages regularly. They changed the shape of the trading day just to give their systems a chance to "cool down" during lunch, and they still had outages. Other metrics were also in the red zone: non-competitive latency and ultra-high operating costs were not sustainable. NASDAQ and NYSE had already migrated to Red Hat Enterprise Linux when in January of 2010, the Tokyo Stock Exchange launched "Arrowhead," their own first deployment of it. Within seconds of the first new trading day of the year, traders noticed that matches, which previously took seconds to complete, were now instantaneous (2.5 ms worst case--6x faster than video refresh at 60Hz). Imagine the feelings of first the relief (it works!) and then the excitement (it's the fastest in the world!) on the floor that day. To date, they have not suffered a trading outage.

Open source represents a profound paradigm change to the way software is developed, deployed, and managed. But it also represents the most effective, efficient, and reliable way to ensure that the enterprise itself can evolve to address continuously changing requirements, environments, challenges, and opportunities. Open source software is the antidote to "too big to fail." It is a way to create mission capability that anticipates the future, and thereby creates the future.

Montessori and the open source way

(originally published August 2011)

I read with delight Steve Dennings article Is Montessori The Origin on Google and Amazon?. His arguments are firm, they accommodate a wide range of scientific facts, and they show what remarkable results can be achieved when we "follow the child." He writes well enough and clearly enough that I need not reiterate his points here—you can (and should!) read his writings directly. But there is more that can be said, particularly in understanding how open source principles and philosophies fit so well with those of Montessori education.

I came to Montessori education late in life, as a parent. I began knowing literally nothing whatsoever about Montessori's work, but the school my daughter attended took Montessori's writings very seriously, and I began to see the profound and deep connections between seemingly simple classroom activities. After reading The Science Behind the Genius, the grand design became clear to me, and I have since become a dedicated proponent of the Montessori method.

The Montessori mantra of "Follow the Child" speaks to the idea of nurturing the agency of the individual. Montessori found that if children are deprived of the opportunities to make authentic choices, their selves do not fully develop, and they can become far too dependent on others to make decisions for them. In an analogous fashion, open source empowers all participants, whether users, developers, distributors, or maintainers, to be authentic agents. Such empowerment encourages not only the improvement of the software (which can be seen by its 100x better quality than proprietary software), but more importantly it encourages the improvement of the individual. This is what I have seen in 20+ years of open source, and what I have seen in 10 years as a Montessori parent.

"Follow the child" is not limited to seeing what a child will do with a fixed curriculum. In Montessori education, all of nature is available for study, and children are encouraged to spend time outdoors, observing, journalling, asking questions, and seeking the necessary knowledge to find answers to those questions. The scientific method is a modular method, which is to say that results are built upon results that are built on yet more results. Scientific results must be reproducible or they are not acceptable as science. In much the same way, the natural modularity of open source software makes itself a kind of science of code. Modules can be freely used in much the same way that scientific results can be freely reproduced. And just as a great scientist tries to make their results as simple and as accessible as possible, there is equally a peer reward system for those who make their software as general, portable, and technically transparent as possible.

A key value of the Montessori method is that learning should be a life-long process. Denning paraphrases this by saying that education is not a destination but a journey. Denning observes that those who see their college diplomas as the all-important destination find themselves at the end of the road when circumstances change. For those who embrace learning as a life-long exercise, change is just a new opportunity to learn. Similarly, open source software tends very much to have open, expansive futures. So many proprietary programs and frameworks rise and fall because they were conceived with an end-state in mind. By contrast, open source software is constantly being rewritten, re-purposed, and re-invented. Look at the evolution of Linux over the past 20 years and tell me: has there ever been an operating system that has evolved so much, so fast, so far? This is the genius of a life-long learning approach.

Of course the real proof of the commonality between Montessori and open source is this: Are Montessori students excited to get their hands on source code? You bet!

The open source why

(originally published May 2011)

Some of my collegues at Red Hat have been working for some time now on a book/wiki titled The Open Source Way. It is aimed at answering the very important questions of "How?" for a given set of Whats, and its a very important resource for those who are ready to roll up their sleeves and to start putting open source principles to work. But, why would anybody want to do that?

Why indeed...

Last year I saw a really great TED video by Simon Sinek. He titled the video "How great leaders inspire action", but my take-away was that when it comes to really bringing about a change in thinking, good answer to the question "Why?" beats a good answer to the question "What?" or "How?" He argues that great leaders inspire action by asking the right "Why?" questions, questions that ultimately make one wonder "Why not?"

Clay Shirky's book Cognitive Surplus (also available as a TED video) references the estimate that the sum total of all articles, edits, arguments, etc., ever made to Wikipedia totaled 100 million hours of human effort. To put that number into perspective, the total time spent watching television each year is 200 billion hours, or about 2,000 times the cumulative total of Wikipedia from inception through the end of 2008. The point of his book is not to declare this as some great shame (others have already done that), but to point out that fundamental new properties of 21-century media and technology provide, for the first time, a way to harness the cognitive surplus that is currently idling away 200 billion hours of human attention each year. That's a lot of attention!

Clay argues, and I agree, that it is simply too easy—and wrong—to write off those 200 billion hours per year as a kind of cognitive entropic loss, even if for many years that has been precisely true. Clay also argues, and I again agree, that as media has evolved from mostly one-way communication (from author to reader, or from broadcaster to viewer) to social and participatory (of peers, for peers, by peers), changes to both individual motivations and new community norms reveal powerful new forces that can effect astonishing results. Clay teaches that "more is different" and that the new forms of association and aggregation that two-way technologies make possible create entirely different economic systems than the presumed (and increasingly debunked) models of pure consumers making rational economic choices.

One of the truly great examples of using the dramatically different dynamics of a participatory network rather than one-way broadcast (which, come to think about it, really should have been one of the examples that made it into Clay's book) is the story of Estonia known as "Let's Do It!". As I wrote on my opensource.org blog back in 2009:

The story begins as many do, with the current generation inheriting all the good that Earth can provide minus all the accumulated harm that generations of human stupidity, greed, and unchallenged status quo have wrought. In Estonia that equation had reached a point where one visionary said "Enough!" Rainer Nõlvak organized a project which effected the cleanup of 10,000 tons of garbage throughout the country's forests in a single day for a cost of €500,000. It was estimated that if this task could have been performed by the government, it would have taken 3 years and cost €22,500,000. The project that Rainer organized thus delivered not only a cost savings of 45:1 (on par with the 50:1 ratio achieved by Hill Air Force Base when they dumped proprietary hardware and software for open source and commodity technologies), but done so quickly that the population of Estonia as a whole could enjoy an additional 5 million person-years of clean forests that had been despoiled by previous generations.

The story of "Let's Do It" exemplifies how multi-way media, which gives individuals a zero-cost way to address the publics that claim them as members. It also demonstrates how enabling and engaging people's human priorities and values can achieve transformative results, while also further repudiating the presumption that individuals are locked in to making "rational" (i.e., selfish) allocation decisions about of scarce resources such as time and money. And, like Wikipedia, it represents less than 1% of the otherwise abundant time the Estonian people have to devote to competing interests, such as watching television or griping about how many people are watching television when they should be doing something more productive.

Which brings us back to the open source "why". For as long as I have been explaining the excitement and potential of open source software, some skeptic (or some cynic) would challenge me by saying "who has the time to write software to solve their own problems?" The fact is that globally, we have extraordinary amounts of time, we just don't use it very well. Partly this is because in the past we didn't all have great tools that would make it easier and more rewarding to use our time more productively. Partly this is because when new tools become available, we're stuck in old ways of thinking and old ways of behaving. The answer as to why create Wikipedia, or Linux, or Apache, or any other great community project can now be understood as really quite simple: because we can. Some intellectual endeavors still have high barriers to participation: not everybody can get unlimited time on the Hubble space telescope or can direct particle beams at the Large Hadron Collider. But when it comes to writing open source software, anyone can learn it and anyone can do it, not only because we as humans have the capacity to learn, but because open source software provides the necessary permissions and implicit invitations to participate as fully vested partners.

Which brings us back to The Open Source Way. The Cognitive Surplus Hypothesis promises virtually unlimited resources for solving collaborative creative problems, but nobody is going to lend their brain to an activity that wastes all their effort—television already has that position! The Open Source Way makes the "Why" of open source practical by teaching the What and the How. Put all these together, take some initiative, and you could see a million, ten million, or one hundred million hours of effort applied to problems make you wonder "why not?"

Advanced manufacturing re-tools with open source (bit by bit)

(originally published June 2012)

Open source software and open source best-practices have become truly ubiquitous in the business world. Software used to be the new frontier, but open source software can be found leading up to the frontier, at the frontier, and beyond. My experience at CGI America 2012 (a US-focused subgroup of the Clinton Global Initiative) confirmed this.

The focus areas of CGI America span the gamut of challenges and opportunities facing America today: clean electricity and efficiency, clean fuel and transportation, early childhood education, entrepreneurship, financial inclusion, housing recovery, reconnecting youth, small business, STEM education, wellness, and workforce development drew more than 800 CEO-level attendees from across the country to share ideas and to make commitments of concrete progress.

I was invited to attend the working group focused on Advanced Manufacturing. Our group of 70+ executives from the public, private, and research sectors took on the strategic (and existential) questions of American manufacturing in the 21st century along the topics of innovation, competitiveness along the supply chain, environmental and economic sustainability, exports, and maintaining/developing a skilled workforce. I don't have much day-to-day experience with Advanced Manufacturing, but I was familiar with the work of Eric Von Hippel generalizing open source best practices to manufacturing and industrial processes. He's done such a great job channeling me that I figured I could channel him for a few days.

Much to my surprise (and delight), open source was not a new idea at CGI, CGI America, or even the Advanced Manufacturing working group. Numerous speakers during the plenary session mentioned projects using open source across the many topic areas already mentioned. At the plenary lunch I met Douglas Woods, President of the Association for Manufacturing Technology (AMT) who told me that that AMT was sponsoring not one, but two open source projects to increase standardization and innovation across their membership. Really?

Well, yes and no. I checked out MTConnect, the home page for the technology and standards projects sponsored by AMT. The fact is that there are published reference documents that can be freely downloaded, and there is code that can be freely downloaded, read, and redistributed from github, but to get to either the documents or the code one must register (it's free) and one must agree to abide by their terms of service (by registering). That is not altogether bad: the website of the Open Source Initiative also demands that users abide by its own terms of service, albeit without the up-front registration requirement, and asking for positive assent to abide by open source terms is not contrary to the Open Source Definition.

Having registered, I looked at the documents and briefly browsed the code repository. It is a start, as so many other projects were, at the beginning, a start. The aspirations of the project are bold, as they should be. As a former OSI Board Member, I would have been really happy to have seen the project select a specific OSI-approved license for their code and/or documentation, but that has not yet been done. This is probably the most important next step, and one that will define for many years to come the community of users that will nurture and sustain the software. I am sure they will deliberate carefully, and they will weigh the arguments for and against various licenses in part based on how those licenses have worked for situations relevant to the members of the AMT. That will take time.

But looking at the bigger picture, the manufacturing community is studying very seriously all the success that the open source community has created: superior innovation (aka competitive advantage), interoperability (aka market opportunity), quality (aka cost and risk management), and long-term sustainability. I think open source software has a lot to offer, not just in terms of helping them make better use of technology, but make better use of the whole ecosystem in which they operate. I look forward to seeing what develops over the next year!

In the mean time, I'll be checking out MakerFaire, which is coming to Raleigh on June 16th. The Makers may not have the capitalization of most Advanced Manufacturing companies, but their creativity is unmatched, and may yet prove helpful in advancing industry as well as the imagination.

How open source is driving the future of cloud computing

(originally published January 2013)

In 1998, Amartya Sen was awarded the Nobel Prize for Economics. The lecture he gave, titled "The Possibility of Social Choice," succinctly captured both the subject of his work (generalizing economic theory to cover social groups of disparate actors rather than just individuals or corporations) and his irrepressible sense of humor (because the generalization applied to Arrow's Impossibility Theorem). Sen's crucial insight (for me) is this (emphasis mine):

Thus, it should be clear that a full axiomatic determination of a particular method of making social choice must inescapably lie next door to an impossibility—indeed just short of it. If it lies far from an impossibility (with various positive possibilities), then it cannot give us an axiomatic derivation of any specific method of social choice. It is, therefore, to be expected that constructive paths in social choice theory, derived from axiomatic reasoning, would tend to be paved on one side by impossibility results (opposite to the side of multiple possibilities). No conclusion about the fragility of social choice theory (or its subject matter) emerges from this proximity.

I am quite familiar with proximity to impossibility. When we started Cygnus Support, the world's first company based on selling commercial support for free software, nearly everybody thought it would be impossible. Those few who did not thought that being so nearly impossible would make the business too fragile to ever be interesting, especially by Silicon Valley standards. The success of Cygnus and the subsequent success of Red Hat strongly validate Sen's bold prediction that being on the edge is not a sign of weakness. Indeed, where do we find leaders, but out in front?

All of the above is a preamble to the subject of this article, which is the presentation of a new economic paradigm for understanding the future and potential of cloud computing. With luck, economists smarter than I will develop the formal methods and analysis that will garner them some recognition in Sweden. But luck or not, the true beneficiaries will be those who embrace this paradigm and profit from the insights that it makes obvious. Insights which, according to today's nay-sayers, are impossible or at best insignificant, but which in fact are the key to recovering trillions of dollars in business value wasted every year under the current paradigms.

Global IT spend tops USD $1.5T per year, and businesses are (or should be) banking on massive IT-enabled returns on that investment. Yet 18% of all projects are abandoned before going into production, and another 55% are "challenged", meaning they are late to market (sometimes very late), buggy (sometimes very buggy), or missing functionality (sometimes key functionality). The estimated costs of these shortfalls is USD $500B per year, but that's only part of the story. The shortfall in terms of expected ROI is 6x to 8x that number, meaning that USD $3.5T of expected business returns never materialize [4]. Each year. No other industry I can think of can tolerate such abysmal performance results, yet that's what we have come to expect from IT. Which is unsustainable.

This problem has remained so stubbornly entrenched in part because the numbers militate against any solution. The probability of failure is so high (18% for sure to fail totally, 55% chance of missing deadlines, milestones, or a clean bill of application health) make it about a 50/50 chance that making any effort to improve one's application environment will actually make it worse, and that even in the best of circumstances, one will only achieve 50%-80% of what was originally intended.

But there is an alternate universe in which we find a working solution: the world of open source, where measured software defect rates are 50x to 150x lower than typical proprietary software, and where the pace of innovation is can be seen on literally a daily basis. The first (and still one of the best) economic analyses to explain this remarkable phenomenon was a game theory analysis by Baldwin and Clark, showing that selfish developers benefit from forced sharing (involuntary altruism) when systems are modular and there is a community of like-minded (i.e., similarly selfish, lazy, and capable) developers. Their results also showed that the results are highly scalable, and that the more modular the system, the larger the community becomes and the greater the payoff for participating. This formal result justified what Tim O'Reilly and so many others observed when they spoke about "The Architecture of Participation.” It also validates the intuition I had when I started Cygnus Support, as well as what I saw happening between our company and the community pretty much from the beginning.

A second finding, explained by Oliver Williamson in his 2009 Nobel Prize lecture, was the formalization of the economics of governance and the economics of organization, specifically to help answer the question: "What efficiency factors determine when a firm produces a good or service to its own needs rather than outsource?" For too long, economists, and the proprietary software industry for that matter, have treated firms as black-boxes, ignoring all the details on the inside and focusing on prices and outputs as the only interesting results to study. Williamson builds a new theory of transaction cost economics based on work first articulated by John R. Commons in 1932 and strongly echoed by W. Edwards Deming in 1982, namely that continuity of contractual relationships is a more meaningful predictor of longterm value than simple prices and outputs. Indeed, when so much is being spent and so much being thrown away when it comes to proprietary systems, the prices and outputs of those systems become almost meaningless. At the limit, the firm that treats IT only as a cost, not a driver of business value, has fallen into a trap from which it is quite difficult to escape. By contrast, the architecture of participation, coupled with ever-increasing utility functions (due to user-driven innovation), show that the Deming cycle is perfectly applicable to software, and that the longterm relationships between firms build far greater value for all concerned than trading price for quitting.

So what does this all mean for the cloud? One hypothesis is that the macroeconomics of the cloud makes the microeconomics of open source insignficant, and therefore irrelevant. If that is true, then the game is truly fixed: a cloud OS is just another OS, cloud apps are just like traditional apps, cloud protocols and managment tools are merely software APIs and consoles, etc. If that is true, then we should all be prepared for the Blue Cloud of Death.

An alternative hypothesis is that open source is the nanotechnology of cloud computing, and its nano-scale properties (architecture of participation, enhanced innovation cycles, quality, and transactional efficiencies) are crucial to all innovation going forward. I argue that this is indeed the case, not only because of the arguments made thus far, but because cloud computing creates a new inductive force that specifically strengthens the arguments just made. And at this point I'm compelled to introduce a rather lengthy analogy; please bear with me. A single tree in the Amazon rainforest can transpire 300L of water per day, or a bit less than half a (cubic) yard of water for those of us still using the Imperial measurement system. It seems insignificant. But when one considers the whole Amazonian rainforest, not only do these trees transpire as much water as flows through the Amazon river itself, but they propel that sky-borne water as far and as fast as well, effectively creating a second Amazon river in the sky. It is one thing to see a tree as shade, or as resource for firewood, or a carbon sink, or any other discrete use, but when the lens changes from the small scale to the large, its function in the larger context cannot be imagined looking at the smaller case. Adam Smith said the same thing about the invisible hand of the market, not to say that it always does the right thing, but to say that it's always doing something. Or, as Gandhi once said

Whatever you do will be insignificant, but it is very important that you do it.

When I started writing open source software back in 1987, Richard Stallman was the maintainer of the GNU project, the master repository was his local disk, and my version control system was Emacs backup files and, to a lesser extent the frequent tarballs of software distinguished by a manually-adjusted release number. Merging changes was a time-intensive (and sometimes energy-intensive) process, but the quality of Stallman's code, and the few others working with him at the time, was such that I could do in weeks what companies could scarcely do in years. The GNU C++ compiler was developed and first released in six months time, while at the same time I ported the GNU compilers to half a dozen new architectures. Everything that was wrong about the way we mananged our software changes in those days represented an opportunity for us to develop a new software management paradigm for supporting customers commercially. We adopted the newly-developed CVS (Concurrent Versioning System) and for a time, the world was our oyster.

Within five years, we had succeeded in many of the ways we imagined: inclusion on the Inc 500 list, the Software 500 list, the cover of a special edition of Fortune magazine, even mentions in the New York Times and the Wall Street Journal. But we succeeded in ways we didn't imagine, nor design for. We stretched CVS to its breaking point. Signing a new customer meant potentially creating a new customer branch in the master repository. This process, which could once be done in a matter of minutes, could take a day. Which meant that with 200 business days a year, if we signed up 200 customers that year, then developers would have precisely zero days with which to do any work against the repository. This frequently led to arguments about forking—developers wanted to work in repositories unconstrained by operational bottlenecks, but somebody had to merge changes that could be delivered to customers. The cost of forking had become intolerable, and the social choice we had to engineer was one of lowered expectations for both customers and employees. Despite those shortcomings, relatively speaking we shined, with the development and delivery of custom compilers and debuggers on time and on budget 98.5% of the time.

But things are different now, and being the best in a broken paradigm is not good enough. In the past five years, a program called "git" has revolutionized how developers and maintainers manage code, and how code can be called into production on a moment's notice, sometimes for just a moment. git has reorganized the open source world so that forking is neither expensive nor problematic, and where projects can merge and combine so easily that it is almost possible to think of it as a kind of quantum superpositioning. This change not only solves the problem that bottlenecked the old way of doing things (at Cygnus and the FSF), but opens up entirely new concepts as to what an application itself might be. Instead of being some monolithic tangle of code that was difficult to create, expensive to test, and impossible to change, it becomes a momentary instance of code and data, producing precisely the result requested before vanishing back into the ether. At any moment in time, new code, new data, new APIs, and new usage contexts guide the evolution of each generation of the application. An application that evolves by the minute is fundamentally different than one that evolves only every year or two (regardless how many new features are promised or even delivered).

This rapid new dimension of evolution—at the application/operational level—requires a new economic analysis. Fortunately the groundwork has been laid: Evolutionary Game Theory studies behavior of populations of agents repeatedly engaging in strategic interactions. Behavior changes in populations are driven either by natural selection via differences in birth and death rates, or by the application of myopic decision rules by individual agents. In the article Radically Simple IT by Dr. David Upton, a deployment model is described in which all existing functionality of the system exists in at least two states—the original state and a modified state. Inspired by the design of fault-tolerant systems that always avoid a single point of failure by running independent systems in parallel, new features can be added as optional modules in parallel with the existing system. When new features are judged to be operationally complete and correct, the system can "fail over" the old modules to the new, and if a problem is then later detected, the system can "fail back" to the original. By constantly running all versions in parallel, some version of the correct answer is always available, while some version of a new and better answer may also be available. When implemented by Shinsei Bank in Tokyo Japan, the bank achieved its operational milestones 4x faster than using conventional deployment methods, and did so at 1/9th the cost. And by designing their system for maximum adaptability (rather than maximum initial functionality) they were able to adapt to customer needs and expectations so successfully they were recognized as the #1 Bank for loyalty and satisfaction two years in a row. When this same approach was implemented by The Emirates Group (coached by the experience of Shinsei) the results were even more impressive.

The combination of low-cost forking (which makes new software generations very rich and diverse) and operational models that can easily select the fittest code in a given generation create a super-charged Deming cycle of sustainable innovation, quality, and value. But to make this cycle effective, the code itself must be susceptible to innovation. Black boxes of proprietary software define the point at which population-driven innovation stops. To fully realize the benefits of the population dynamics of open source innovation, the source code must be available at every level of the system.

We cannot solve problems by using the same thinking we used when we created them.—Albert Einstein

To summarize this rather far-reaching thesis, the world of Enterprise IT has been suffering under the delusion that if we throw enough money at enough black boxes, one of them will surely solve the problems that we were originally tasked with solving. Even if true, the world changes at such a rate that solving a problem once relevant in the past is likely no longer relevant in the future, especially if that problem is merely a symptom of a deeper problem. Recent results in economic theory teach that price and output analysis tend to reveal symptoms, but rarely uncover real, sustainable solutions. But an economic understanding of governance, transactions, and mutual benefit can inform not only sustainable solutions, but can induce ongoing, sustainable innovation, thereby creating ever-increasing business or social value. Evolutionary Game Theory provides a framework for national-level and enterprise-level analysis of a shift from proprietary applications to cloud computing. Factors such a financial capital, knowledge capital, business value potential, and trust capital influence both the processes of natural selection across populations as well as the myopic decisions of agents within populations. Open source software enables vital mechanisms prohibited by proprietary software, fundamentally changing the evolutionary rate and quality of successive generations of (cloud) applications. There is perhaps no easier nor faster way to add more value to enterprise, national, or global accounts than to embrace open source cloud computing and evolve beyond the problems of proprietary applications and platforms. All it requires is that you do something—as a member of the open source community—no matter how insignificant it may seem.

About This Series

The Open Voices ebook series highlights ways open source tools and open source values can change the world. Read more at http://opensource.com/resources/ebooks.

[image: Writer2ePub]

Created with Writer2ePub

by Luca Calcinai

OEBPS/images/w2e.jpg
Writer

OEBPS/images/green_sea_slug.jpg

