
Starting a DevOps
Transformation

Breaking down walls between
people, process, and products

Opensource.com

https://opensource.com/

Blender: Discover the most commonly and frequently used
hotkeys and mouse button presses.

Containers: Learn the lingo and get the basics in this quick and
easy containers primer.

Go: Find out about many uses of the go executable and the most
important packages in the Go standard library.

Inkscape: Inkscape is an incredibly powerful
vector graphics program that you can use to draw
scaleable illustrations or edit vector artwork that
other people have created.

Linux Networking: In this downloadable PDF cheat
sheet, get a list of Linux utilities and commands for
managing servers and networks.

Python 3.7: This cheat sheet rounds up a few
built-in pieces to get new Python programmers
started.

Raspberry Pi: See what you need to
boot your Pi, how to install the operating
system, how to enable SSH and connect
to WiFi, how to install software and update
your system, and links for where to get
further help.

SSH: Most people know SSH as a tool for
remote login, which it is, but it can be used
in many other ways.

Open Source Cheat Sheets
Visit our cheat sheets collection for

free downloads, including:

https://opensource.com/tags/cheat-sheet

. Opensource.com

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 3

About Opensource.com

What is Opensource.com?

Opensource.com publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

Chat with us in Freenode IRC: #opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.Opensource.com
http://www.Opensource.com
https://www.Opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal
https://freenode.net/#opensource.com

About the Author . . .

4	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

Willy-Peter Schaub

Since mid-’80s, I have been striving for simplicity and
maintainability in software engineering. As a

software engineer, I analyse, design, develop, test, and support software
solutions. I am passionate about continuous
innovation and to share learnings from the digital
transformation, by Microsoft and the ALM | DevOps
Rangers, to a DevOps culture to adapt people,
process, and products to continuously deliver
value to our end users.

Contact Willy-Peter Schaub

Website:	 https://willys-cave.ghost.io
	 https://www.agents-of-chaos.org

Linked In:	 http://www.linkedin.com/in/wpschaub

Twitter:	 https://twitter.com/wpschaub

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://willys-cave.ghost.io
https://agents-of-chaos.org/
http://www.linkedin.com/in/wpschaub

. Opensource.com

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 5

Introduction

Chapters

Get Involved | Additional Resources

Breaking down walls between people, process, 	 6
and products

Blueprint for a team with a DevOps mindset 	 7
DevOps transformation: Key differences in small, 	 10
midsize, and large organizations
Analyzing the DNA of DevOps	 13
Visualizing a DevOps mindset	 17
Deploying new releases: Feature flags or rings?	 20
What’s the cost of feature flags?	 22

Get involved | Additional Resources	 25
Write for Us | Keep in Touch 	 26

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

Introduction . . .

6	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

Over the past few months, I published a
few articles that explore the

three Ps that are core to your digital transformation, enabling
you to move from a resource-optimized business model
based on capital expenses (CAPEX) to a market-optimized
model based on operational expenses (OPEX). Among
other benefits, the union of People, Process, and Products

helps you drive core business values, such as increasing
the flow of business value, shortening delivery cycle times,
and enabling everyone to continuously learn, adapt, and
improve.
Engineers (like me) typically focus on products, tools, and
technologies. While these are pivotal to the success of
DevOps, it is important to realize that you cannot buy or
install DevOps! Products
are enablers, not silver
bullets. They allow you to
focus on outcomes, such
as automation, consisten-
cy, reliability, maintainability,
progressively enabling or
disabling features, and visu-
alizing the flow of value.

When we talk about process, we often gravitate to au-
tomation to enable efficient, stable, and consistent value
streams. It is important to also include goals to celebrate
success as a team and organization, focus on quality from
ideation to deprecation, create a lightweight and responsive
change-management process, embrace loosely coupled ar-
chitectures to enable scaling, and strive for multiple new-fea-

ture releases per day.
At the core of the trans-

formation are people and
their culture, not prod-
ucts, process, or even
the organization’s size.
People need to buy into
DevOps, understand how
their roles will be affected,
and take responsibility for
their part of the trans-
formation. People need
to realize that DevOps
is not limited to devel-

opment and operations, even if its very name excludes
other stakeholders. You need to break down all barriers
and walls within your organization, bringing together all
stakeholders, including development, data services, oper-
ations, security, and business.

To help you explore the three Ps, we’ve bundled a few
articles for you to read.

Breaking down walls
between people, process,
and products
DevOps transformation success hinges on removing the barriers inherent in an organization.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. Blueprint for a team with a DevOps mindset

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 7

I’ve had the privilege to work with some of the
brightest minds and leaders in

my 33 years of software engineering. I’ve also been fortu-
nate to work for a manager who made me question my ca-
reer daily and systematically broke down my passion—like
a destructive fire sucking the oxygen out of a sealed space.
It was an unnerving period, but once I broke free, I realized
I had the opportunity to reflect on one of the greatest an-
ti-patterns for effective teams.

It should come as no surprise that the culture of an or-
ganization and its engineering teams is the greatest chal-
lenge when embarking on a DevOps mindset [1] trans-
formation. The organization needs to influence through
leadership and autonomy, promoting a culture of learn-
ing and experimentation, where failure is an opportunity
to innovate, not persecute. Fear of retribution should be
frowned upon like the archaic Indian practice of Sati [2].
Teams need to feel they are operating in a safe environ-
ment, understand what the transformation entails, and
know how they will be affected.

So, what is the blueprint of an effective team? The con-
cept of autonomy, self-organization, and self-management

is core to agile practice. In addition, lean practices promote
reducing waste, creating short feedback loops, using light-
weight change approval, limiting work in progress (WIP),
reflecting and acting on feedback, and transparently visu-
alizing work management. All these strengths need to be
reflected in your blueprint.

Let’s review an effective team blueprint’s genetic information.
As shown in the graphic below, self-organization is a nat-

ural process that creates order within the team. It outlines
HOW the autonomous team collaborates and coordinates.
Self-management defines how the diverse team members
work together in their own way, aligned with a shared vision
and governance, owned by the leadership.

Line of autonomy and governance.
Team size is a topic that creates vibrant discussions.
Some say the ideal size is 7±2, others say 6±3, while oth-
ers maintain that there is no upper limit. Another argument
comes from anthropologist R.I.M. Dunbar [3], who says in
his paper [4] on the relationship between humans’ neocor-
tex size and group size, “there is a cognitive limit to the
number of individuals” in an effective team. He argues that

Blueprint for a team with a
DevOps mindset
Culture is the greatest challenge when embarking on a DevOps transformation.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/wpschaub/DevOps-mindset-essentials
https://en.wikipedia.org/wiki/Sati_%28practice%29
https://en.wikipedia.org/wiki/Robin_Dunbar
http://www.uvm.edu/~pdodds/files/papers/others/1993/dunbar1993a.pdf

Blueprint for a team with a DevOps mindset . . .

8	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

with others, while the vertical bar represents the depth of
a single expertise. Assume we have a three-person team
comprised of experts in development, testing, and user ex-
perience. Each has his or her own T-shaped skills. When
we combine the three experts’ genetic material, we get a
joint T-shaped team with specialization and broad exper-
tise that can design, develop, test, and support features
as a cross-functional team. The culture of learning not only
ensures that the team’s combined broad and specialized
expertise is aligned with business needs, but it also em-
powers and motivates the team and its members. Infor-
mation sharing and brown bag events are two excellent
team-building tools.

Shortage of testers? No problem; with the support of the
test expert, the development and user experience experts
can temporarily blend into a test role. When testers auto-
mate testing, learn and share good coding practices, help
improve feedback loops, and help the team broaden their
skills beyond unit and regression testing, the line between
developers and testers begins to blur. The developer and
tester roles evolve and merge into the engineer role.

This raises the question: “What if team members refuse to
be cross-functional?” There is no place for heroes or knights
in shining armor in an effective cross-functional team—find
them another home.

Inspire and celebrate success as a team and an orga-
nization whenever achieving a goal. It motivates the team,
fuels team spirit, and acts as a major source of inspiration
for others to excel. Your team can enjoy a round of nachos
to confirm a job well done, play and learn with a game of
GetKanban, encourage team members to celebrate with
their family after a hectic sprint, or review and celebrate fast
feedback as part of your regular standups. The options are
endless—just ensure you spend time together as a team.

For example, our scrum master always reflects on our
achievements whether we pass or fail a sprint. It eventually

if you want a highly cohesive team, keep your team size
smaller than 12.

Amazon CTO Werner Vogels’ famous quote “You build it,
you run it” [5] is reminiscent of the great thematic quote from
Spider-Man: “With great power comes great responsibility.”
We need to foster ownership, accountability, and responsi-
bility. Everyone in the team must be empowered, trained to
run the business, responsible, and on call. When there is a
live site incident, all designated response individuals, which

includes members from the associated feature team, must
join the 2am call to gather evidence, investigate, and reme-
diate at the root-cause level.
The 2am wakeup call is the best motivation for a produc-
tion-ready mindset. Pull any engineer into an early morning
live site incident a few times, and the quality bar magically
shall improve.

Cross-functional is another key part of genetic informa-
tion for an effective team blueprint. Contrary to common
belief, it does not imply that everyone in the team can
do everything. Instead, as shown in the graph below, the
cross-functional team is based on the concept of T-shaped
skills or T-shaped persons. The horizontal bar of the T
stands for broad expertise and the ability to collaborate

EPIPHANY: The 2am wakeup call is the
best motivation for a production-ready

mindset. Pull any engineer
into an early morning
live site incident a few
times, and the quality bar
magically shall improve.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://queue.acm.org/detail.cfm?id=1142065

. Blueprint for a team with a DevOps mindset

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 9

dawned on me that it not only bonds us as a team, but others
aspire to be like our team.

Finally, remember to keep it simple to reduce risk, cost of
training, process, and products. Enable the just barely good
enough (JBGE) approach. Simplicity positively affects main-
tainability and enables cross-functional teams to collaborate
and fill in for each other more effectively.

You might be wondering why none of the above feels
like a new revelation. As discussed in Analyzing the DNA
of DevOps [6], we believe DevOps has inherited from de-
cades of practices and learning, including waterfall, lean
thinking, agile, and “real-world” 2am live site incident
calls. We are not inventing anything new; instead, we con-
tinue to reflect, learn, and streamline our blueprint. The
DevOps mindset is based on a few matured foundations,
and DevOps lights up when the team is razor-focused on
delivery, telemetry, support in production, and (most im-
portantly) bonding together as a team. A team that doesn’t
enjoy being together is not a team; they are a group of
individuals told to work together.

So, let’s get back to the greatest anti-pattern I mentioned.
Effective teams, who are autonomous, empowered, self-or-
ganizing, and self-managed are based on trust, inspiration,
and support of their leadership. If any of these important pil-
lars is missing, toxicity rises, passion declines, and you are
an eyewitness to the most destructive anti-pattern that will
doom any diverse, collaborative, and effective team.

Links
[1]	� https://github.com/wpschaub/DevOps-mindset-essentials
[2]	� https://en.wikipedia.org/wiki/Sati_(practice)
[3]	 �https://en.wikipedia.org/wiki/Robin_Dunbar
[4]	� http://www.uvm.edu/~pdodds/files/papers/others/1993/

dunbar1993a.pdf
[5]	� https://queue.acm.org/detail.cfm?id=1142065
[6]	 �https://opensource.com/article/18/11/analyzing-devops-

dna-traces-waterfall-and-other-frameworks

Blueprint for an effective team with a DevOps mindset.

Adapted from “Blueprint for a team with a DevOps mindset” on Opensource.com,
published under a Creative Commons Attribution Share-Alike 4.0 International
License at https://opensource.com/article/18/12/blueprint-team-devops-mindset.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/11/analyzing-devops-dna-traces-waterfall-and-other-frameworks
https://github.com/wpschaub/DevOps-mindset-essentials
https://en.wikipedia.org/wiki/Sati_%28practice%29
https://en.wikipedia.org/wiki/Robin_Dunbar
http://www.uvm.edu/~pdodds/files/papers/others/1993/dunbar1993a.pdf
http://www.uvm.edu/~pdodds/files/papers/others/1993/dunbar1993a.pdf
https://queue.acm.org/detail.cfm?id=1142065
https://opensource.com/article/18/11/analyzing-devops-dna-traces-waterfall-and-other-frameworks
https://opensource.com/article/18/11/analyzing-devops-dna-traces-waterfall-and-other-frameworks
http://Opensource.com
https://opensource.com/article/18/12/blueprint-team-devops-mindset

DevOps transformation: Key differences in small, midsize, and large organizations

10	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

The continuous innovation journey to
DevOps is just that—

continuous—meaning it’s unlikely you’ll ever reach the
destination.

As depicted in the graphic below, the journey’s steps are:
assess and compare the organization with the rest of the
industry, ensure that the people buy into the transforma-
tion, introduce an engineering process and products that
enable teams to delight their stakeholders, continuously
deliver value, and scale solutions from hundreds to mil-
lions of users. Conceptually, the transformation should be
the same for any organization.

However, a DevOps
transformation in a com-
pany with a handful of en-
gineers is quite different
from one with hundreds or
thousands of engineers.

Instinctively, the DevOps
journey should be easiest
with small organizations,
as they are typically abun-
dant with passion and
an appetite for change.
However, small organi-
zations tend to be more
constrained on resources,
infrastructure, and bud-
get, while larger organi-
zations tend to have more
policies, governance, and
politics that affect the
transformation.

So, how does size mat-
ter? Here’s what members

DevOps transformation:
Key differences in small, midsize,
and large organizations
When embracing a DevOps mindset, does an organization’s size matter?

DevOps transformation journey

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. . . . DevOps transformation: Key differences in small, midsize, and large organizations

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 11

of the community said in a poll about how size affects the
ease of transforming.

Small and emerging organizations
In small organizations, management and engineering lines
of responsibility tend to blur, which naturally creates a lean
environment. Similarly, because resources are scarce, en-
gineering typically wears multiple technical and operation-
al hats, which organically creates cross-functional teams
that are accountable for their solutions. Also, there is usu-
ally an abundance of passion and appetite for new prod-
ucts and processes in small and emerging organizations,
which makes them ideal candidates for a transformation to
a DevOps mindset. In addition, the DevOps transformation
is becoming a necessity to compete with larger competitors.

As management and engineering in small organizations
are lean, it is important to ensure there is a clear vision, engi-
neering is empowered and accountable, the line of autonomy
is respected, and the feedback and fail-fast processes are
active. There also needs to be a clear “2 AM call” process
for when a live site incident impacts the user experience—
in many cases, even the
CEO of a small organi-
zation must be on the
standby roster. Engineers
who are unwilling to ful-
fill a cross-functional role
are a risk for these orga-
nizations. Engineers must
have the right attitude, and
some may need to find an-
other home (within the or-
ganization or without).

Consider the DevOps-
as-a-Service and Fully
Embedded models Mat-
thew Skelton discusses
in “What Team Structure
is Right for DevOps to
Flourish?” [1] The former
model is ideal for small
organization and the latter
is feasible, as Microsoft’s
part-time ALM | DevOps
Ranger [2] community
demonstrates.

Midsize organizations
Midsize organizations’
rising resources and bud-
get often create an envi-
ronment where politics,
policies, and technical
governance raise their

ugly heads. You are likely to find a focused IT operations
team, one or a few engineering teams, and the dreaded
divide between development and operations. These are si-
loed environments where development builds the solutions
and IT ops supports the infrastructure and solutions.

Midsize organizations must focus on breaking down the si-
los, creating a common language, and establishing technical
governance that will unite the business, development, and
operations leadership and engineering. Talking about mani-
festos (instead of governance) will reduce the angst and re-
sistance from engineering.

Consider the Temporary DevOps Team Skelton de-
scribes in the “team structure” article linked above. It is
a good, albeit temporary strategy to bring dev and ops
closer together.

Large and established organizations
Few of us have the luxurious resources and budgets of
large organizations such as Amazon, Facebook, Google,
or Microsoft. Large organizations have the diversity, ex-
perience, and ability to divide their operations and devel-

Ability to embrace DevOps based on organization size

DevOps patterns in organizations by size

DevOps anti-patterns in organizations by size

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://blog.matthewskelton.net/2013/10/22/what-team-structure-is-right-for-devops-to-flourish/
https://opensource.com/article/17/11/devops-rangers-transformation

DevOps transformation: Key differences in small, midsize, and large organizations

12	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

els Skelton discusses in his blog have proven successful
with large organizations that naturally embrace DevOps.
For others, the DevOps-as-a-Service and Temporary
DevOps Team models are ideal to bring dissimilar teams
closer together.

The right strategy
Every organization is different, and assessing the right strat-
egy is a combination of multiple characteristics, irrespective
of size.

It is important to perform an assessment of the orga-
nization’s people, process, and products to reveal its
culture, leadership, teams, and appetite for change. More
importantly, the assessment will highlight the areas that
will transform naturally and the areas you need to nurture
thoughtfully.

At the core, it is people and their culture, not an organiza-
tion’s size, that molds and differentiates organizations from
one other.

Links
[1]	� https://blog.matthewskelton.net/2013/10/22/what-team-

structure-is-right-for-devops-to-flourish/
[2]	� https://opensource.com/article/17/11/devops-rangers-

transformation

opment teams into
many small, focused
teams. For example,
Microsoft has several
product-focused units,
such as Windows,
Office, and Azure
DevOps, each broken
down into many small
teams using a com-
mon engineering sys-
tem. The teams nat-
urally embrace agile
and DevOps practices, supported by a unified enterprise-level
vision and transformation strategy.

Consider establishing a community of excellence or cen-
ter of excellence to create special interest groups. Tapping
thought leadership by skilled knowledge workers in this way
can enable and provide the organization with best practic-
es. These groups also support the concept of a DevOps-
as-a-Service pattern to help move the organization to the
next level of awareness and maturity, share knowledge, cut
waste, and innovate. Ensure you have representation from
business, development, and operations! While all types of
organizations would benefit from DevOps-as-a-Service, re-
source requirements—budget and people—make it viable
for medium and large organizations only.

Some large organizations feel like midsized organizations,
with siloed leadership, business, operations, and develop-
ment teams, just bigger and more segregated. Their challeng-
es include encouraging the entire organization to consider
and embrace DevOps practices, translating organizational
business-speak into a common language, and introducing
unfamiliar concepts such as scrums, kanban, sprint cadence,
short delivery cycles, quick and lightweight feedback loops,
and continuous experimentation in production. While many
organizations see the value of bringing development and op-
erations closer together, you will experience resistance from
waterfall teams that are used to stringent sequences, detailed
and predictable scope, and milestone-focused projects.
You may also experience leadership unintentionally inter-
fering with engineering teams, blurring the line of auton-
omy that separates
the WHAT and WHY
(owned by leader-
ship) from the HOW
and WHEN (owned
by engineering).

The Fully Em-
bedded or Smooth
Collaboration mod- People, process, products challenges in DevOps

DNA: Culture, leadership, process, and team

Adapted from “DevOps transformation: Key differences in small, midsize,
and large organizations” on Opensource.com, published under a Creative
Commons Attribution Share-Alike 4.0 International License at https://
opensource.com/article/19/1/devops-small-medium-large-organizations.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://blog.matthewskelton.net/2013/10/22/what-team-structure-is-right-for-devops-to-flourish/
https://blog.matthewskelton.net/2013/10/22/what-team-structure-is-right-for-devops-to-flourish/
https://opensource.com/article/17/11/devops-rangers-transformation
https://opensource.com/article/17/11/devops-rangers-transformation
https://opensource.com/article/19/1/devops-small-medium-large-organizations
https://opensource.com/article/19/1/devops-small-medium-large-organizations

. Analyzing the DNA of DevOps

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 13

If you were
to analyze the DNA of
DevOps, what would you
find in its ancestry report?

This chapter is not a meth-
odology bake-off, so if you
are looking for advice or a
debate on the best approach
to software engineering,
you can stop reading here.
Rather, we are going to explore the genetic sequences
that have brought DevOps to the forefront of today’s digital
transformations.

Much of DevOps has evolved through trial and error, as
companies have struggled to be responsive to custom-
ers’ demands while improving quality and standing out in
an increasingly competitive marketplace. Adding to the
challenge is the transition from a product-driven to a ser-
vice-driven global economy that connects people in new

ways. The software devel-
opment lifecycle is becom-
ing an increasingly complex
system of services and mi-
croservices, both intercon-
nected and instrumented.
As DevOps is pushed fur-
ther and faster than ever,
the speed of change is wip-
ing out slower traditional
methodologies like waterfall.

We are not slamming the waterfall approach—many or-
ganizations have valid reasons to continue using it. How-
ever, mature organizations should aim to move away from
wasteful processes, and indeed, many startups have a
competitive edge over companies that use more tradition-
al approaches in their day-to-day operations.

Ironically, lean, Kanban [1], continuous, and agile prin-
ciples and processes trace back to the early 1940’s, so
DevOps cannot claim to be a completely new idea.

Analyzing the
 DNA of DevOps
How have waterfall, agile, and other development frameworks
shaped the evolution of DevOps? Here’s what we discovered.

Haplogroup—Paternal line for SDLC

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Kanban

Analyzing the DNA of DevOps . . .

14	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

Lean thinking is based on five principles [4]: value, value
stream, flow, pull, and perfection. The core of this approach
is to understand and support an effective value stream, elim-
inate waste, and deliver continuous value to the user. It is
about delighting your users without interruption.

Kaizen
Kaizen is based on incremental improvements; the
Plan->Do->Check->Act lifecycle moved companies toward
a continuous improvement mindset. Originally developed to
improve the flow and processes of the assembly line, the Kai-
zen concept also adds value across the supply chain. The
Toyota Production system was one of the early implementors
of Kaizen and continuous improvement. Kaizen and DevOps
work well together in environments where workflow goes from
design to production. Kaizen focuses on two areas:
• �Flow
• �Process

Continuous delivery
Kaizen inspired the development of processes and tools
to automate production. Companies were able to speed
up production and improve the quality, design, build, test,
and delivery phases by removing waste (including culture
and mindset) and automating as much as possible using
machines, software, and robotics. Much of the Kaizen
philosophy also applies to lean business and software
practices and continuous delivery deployment for DevOps
principles and goals.

Agile
The Manifesto for Agile Software Development [5] appeared
in 2001, authored by Alistair Cockburn, Bob Martin, Jeff
Sutherland, Jim Highsmith, Ken Schwaber, Kent Beck, Ward
Cunningham, and others.

Let’s start by stepping back a few years and looking at
the waterfall, lean, and agile software development ap-
proaches. The figure below shows a “haplogroup” of the
software development lifecycle. (Remember, we are not

looking for the
best approach but
trying to under-
stand which ap-
proach has pos-
itively influenced

our combined 67 years of software engineering and the
evolution to a DevOps mindset.)

The traditional waterfall method
From our perspective, the oldest genetic material comes
from the waterfall [2] model, first introduced by Dr. Winston
W. Royce in a paper published in the 1970’s.

Like a waterfall, this approach emphasizes a logical and
sequential progression through requirements, analysis,
coding, testing, and operations in a single pass. You
must complete each sequence, meet criteria, and obtain
a signoff before you can begin the next one. The wa-
terfall approach benefits projects that need stringent se-
quences and that have a detailed and predictable scope
and milestone-based development. Contrary to popular
belief, it also allows teams to experiment and make early
design changes during the requirements, analysis, and
design stages.

Lean thinking
Although lean thinking dates to the Venetian Arsenal in the
1450s, we start the clock when Toyota created the Toyota
Production System [3], developed by Japanese engineers
between 1948 and 1972. Toyota published an official de-
scription of the system in 1992.

“A fool with a tool is still
a fool.” –Mathew Mathai

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.lean.org/WhatsLean/Principles.cfm
http://agilemanifesto.org/
https://airbrake.io/blog/sdlc/waterfall-model
https://en.wikipedia.org/wiki/Toyota_Production_System

. Analyzing the DNA of DevOps

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 15

principal DevOps manager Donovan Brown [14] defines
DevOps as “the union of people, process, and products to
enable continuous delivery of value to our end users.”

Let’s go back to our original question: What would you find
in the ancestry report of DevOps if you analyzed its DNA?

We are looking at history dating back 80, 48, 26, and 17
years—an eternity in today’s fast-paced and often turbulent
environment. By nature, we humans continuously exper-
iment, learn, and adapt, inheriting strengths and resolving
weaknesses from our genetic strands.

Under the microscope, we will find traces of waterfall,
lean thinking, agile, scrum, Kanban, and other genetic ma-
terial. For example, there are traces of waterfall for detailed
and predictable scope, traces of lean for cutting waste, and
traces of agile for promoting increments of shippable code.
The genetic strands that define when and how to ship the
code are where DevOps lights up in our DNA exploration.

You use the telemetry you collect from watching your solu-
tion in production to drive experiments, confirm hypothe-
ses, and prioritize your product backlog. In other words,
DevOps inherits from a variety of proven and evolving
frameworks and enables you to transform your culture,
use products as enablers, and most importantly, delight
your customers.

If you are comfortable with lean thinking and agile, you will
enjoy the full benefits of DevOps. If you come from a water-
fall environment, you will receive help from a DevOps mind-
set, but your lean and agile counterparts will outperform you.

Agile [6] is not about throwing caution to the wind, ditching
design, or building software in the Wild West. It is about be-
ing able to create and respond to change. Agile development
is based on twelve principles [7] and a manifesto that values
individuals and collaboration, working software, customer
collaboration, and responding to change.

Disciplined agile
Since the Agile Manifesto has remained static for 20 years,
many agile practitioners have looked for ways to add choice
and subjectivity to the approach. Additionally, the Agile Man-
ifesto focuses heavily on development, so a tweak toward
solutions rather than code or software is especially needed
in today’s fast-paced development environment. Scott Ambler
and Mark Lines co-authored Disciplined Agile Delivery [8] and
The Disciplined Agile Framework [9], based on their expe-
riences at Rational, IBM, and organizations in which teams
needed more choice or were not mature enough to implement
lean practices, or where context didn’t fit the lifecycle.

The significance of DAD and DA is that it is a process-de-
cision framework [10] that enables simplified process de-
cisions around incremental and iterative solution delivery.
DAD builds on the many practices of agile software de-
velopment, including scrum, agile modeling, lean software
development, and others. The extensive use of agile mod-
eling and refactoring, including encouraging automation
through test-driven development (TDD), lean thinking such
as Kanban, XP [11], scrum [12], and RUP [13] through a
choice of five agile lifecycles, and the introduction of the
architect owner, gives agile practitioners added mindsets,
processes, and tools to successfully implement DevOps.

DevOps
As far as we can gather, DevOps emerged during a series
of DevOpsDays in Belgium in 2009, going on to become the
foundation for numerous digital transformations. Microsoft

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://donovanbrown.com/
https://www.agilealliance.org/agile101
http://agilemanifesto.org/principles.html
https://books.google.com/books?id=CwvBEKsCY2gC
http://www.disciplinedagiledelivery.com/books/
https://en.wikipedia.org/wiki/Disciplined_agile_delivery
https://en.wikipedia.org/wiki/Extreme_programming
https://www.scrum.org/resources/what-is-scrum
https://en.wikipedia.org/wiki/Rational_Unified_Process

Analyzing the DNA of DevOps . . .

16	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

• �Loosely coupled technical services while bringing together
and delighting all stakeholders

• �Building potentially consumable solutions every two weeks
or faster

• �Collecting, measuring, analyzing, displaying, and automat-
ing actionable insight through the DevOps processes from
concept through live production use

• �Continuous improvement following a Kaizen and disci-
plined agile approach

The next stage in the development of DevOps

Will DevOps ultimately be considered hype—a collection of
more tech thrown at corporations and added to the already
extensive list of buzzwords? Time, of course, will tell how
DevOps will progress. However, DevOps’ DNA must contin-
ue to mature and be refined, and developers must under-
stand that it is neither a silver bullet nor a remedy to cure all
ailments and solve all problems.

DevOps != Agile != Lean Thinking != Waterfall

DevOps != Tools !=Technology

DevOps c Agile c Lean Thinking c Waterfall

Links
[1]	� https://en.wikipedia.org/wiki/Kanban
[2]	� https://airbrake.io/blog/sdlc/waterfall-model
[3]	� https://en.wikipedia.org/wiki/Toyota_Production_System
[4]	� https://www.lean.org/WhatsLean/Principles.cfm
[5]	� http://agilemanifesto.org/
[6]	� https://www.agilealliance.org/agile101
[7]	� http://agilemanifesto.org/principles.html
[8]	 �https://books.google.com/books?id=CwvBEKsCY2gC
[9]	� http://www.disciplinedagiledelivery.com/books/
[10]	� https://en.wikipedia.org/wiki/Disciplined_agile_delivery
[11]	� https://en.wikipedia.org/wiki/Extreme_programming
[12]	 �https://www.scrum.org/resources/what-is-scrum
[13]	� https://en.wikipedia.org/wiki/Rational_Unified_Process
[14]	� http://donovanbrown.com/
[15]	� http://www.opengroup.org/togaf

Co-authored by Brent Reed

Brent Aaron Reed is a pragmatic leader who has been in-
volved at the forefront of technology and its application in
bringing value to people. Brent strives for continuous im-
provement through education, awareness, collaboration and
passion. Brent is certified in Microsoft, Security+, Agile & Dis-
ciplined Agile and many other frameworks and technologies.

eDevOps

In 2016, Brent Reed coined the term eDevOps (no Goo-
gle or Wikipedia references exist to date), defining it as
“a way of working (WoW) that brings continuous improve-
ment across the enterprise seamlessly, through people,
processes and tools.”

Brent found that agile was failing in IT: Businesses that
had adopted lean thinking were not achieving the value, fo-
cus, and velocity they expected from their trusted IT experts.
Frustrated at seeing an “ivory tower” in which siloed IT ser-
vices were disconnected from architecture, development,
operations, and help desk support teams, he applied his
practical knowledge of disciplined agile delivery and added
some goals and practical applications to the DAD toolset,
including:
• �Focus and drive of culture through a continuous improve-

ment (Kaizen) mindset, bringing people together even
when they are across the cubicle

• �Velocity through automation (TDD + refactoring everything
possible), removing waste and adopting a TOGAF [15],
JBGE (just barely good enough) approach to documentation

• �Value through modeling (architecture modeling) and shift-
ing left to enable right through exposing anti-patterns while
sharing through collaboration patterns in a more versatile
and strategic modern digital repository

Using his experience with AI at IBM, Brent designed a matu-
rity model for eDevOps that incrementally automates dash-
boards for measuring and decision-making purposes so that
continuous improvement through a continuous deployment
(automating from development to production) is a real possi-
bility for any organization. eDevOps in an effective transfor-
mation program based on disciplined DevOps that enables:
• �Business to DevOps (BizDevOps),
• �Security to DevOps (SecDevOps)
• �Information to DevOps (DataDevOps)

Adapted from “Analyzing the DNA of DevOps” on Opensource.com, published
under a Creative Commons Attribution Share-Alike 4.0 International License
at https://opensource.com/article/18/11/analyzing-devops.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Kanban
https://airbrake.io/blog/sdlc/waterfall-model
https://en.wikipedia.org/wiki/Toyota_Production_System
https://www.lean.org/WhatsLean/Principles.cfm
http://agilemanifesto.org/
https://www.agilealliance.org/agile101
http://agilemanifesto.org/principles.html
https://books.google.com/books?id=CwvBEKsCY2gC
http://www.disciplinedagiledelivery.com/books/
https://en.wikipedia.org/wiki/Disciplined_agile_delivery
https://en.wikipedia.org/wiki/Extreme_programming
https://www.scrum.org/resources/what-is-scrum
https://en.wikipedia.org/wiki/Rational_Unified_Process
http://donovanbrown.com/
http://www.opengroup.org/togaf
http://www.opengroup.org/togaf
https://opensource.com/article/18/11/analyzing-devops

. Visualizing a DevOps mindset

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 17

These days, organizations are moving from
a resource-optimized business

model based on capital expenses (CAPEX [1]) to a mar-
ket-optimized model based on operational expenses (OPEX
[2]). What’s driving this shift? Reducing time to market and
continuously delighting customers with value.

Welcome to digital transformation. Are you ready to em-
brace a DevOps mindset in your organization?

As defined by DevOps manager Donovan Brown [3],
“DevOps is the union of people, process, and products to
enable continuous delivery of value to our end users.”

Being a visual-minded person, I created a presentation
with posters [4] for the recent Global DevOps Bootcamp
(GDBC) [5]. This annual community-driven event is hosted
around the globe to create an environment in which par-
ticipants collaboratively explore digital transformation and
DevOps insights.

Let’s explore four of the quick-reference posters [6]
(also referred to as visuals and infographics). For a more
in-depth discussion of DevOps, refer to The DevOps
Handbook [7], by Gene Kim, Jez Humble, Patrick Debois,
and John Willis.

Practices
Based on the DevOps Assessment [8], the first two posters
are intended to be used when reviewing the assessment
results with all stakeholders. The first one introduces five
key practices:

Top performers encourage a culture that fosters a growth
mindset, reward innovation, collaboration, experimentation,
learning, and user empathy. Strive for a process with respon-
sive application delivery, flexible scheduling, and iterative
experiments. Monitor, identify and mitigate issues, and con-
tinuously eliminate wasteful bottlenecks. Only valuable key
performance indicators are measured and used to strive for
better outcomes, such as a low change failure rate (CFR),

Visualizing a
 DevOps mindset
Use this graphical analysis to help develop a
DevOps strategy for your organization.

DevOps is not about magical unicorns and colorful
rainbows. It’s a journey of continuous learning and
improvement, with a destination you never quite
get to. It’s the reason that
all of the images herein are
based on the infinity symbol:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.investopedia.com/terms/c/capitalexpenditure.asp
https://en.wikipedia.org/wiki/Operating_expense
http://donovanbrown.com/post/what-is-devops
https://github.com/wpschaub/DevOps-mindset-essentials/blob/master/src/presentations/devops-mindset-essentials-gdbc.pdf
https://globaldevopsbootcamp.com/
https://github.com/wpschaub/DevOps-mindset-essentials/tree/master/src/posters
http://a.co/92KSNxJ
https://aka.ms/devopsassessment

Visualizing a DevOps mindset . . .

18	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

actively listen to your users, progressively enable and dis-
able features, perform continuous experiments, and mea-
sure key performance indicators. Use all available feedback
to maximize learnings and influence value.

Shift left encourages reviews, validations, and approv-
als for both testing and security as early as possible in
the feature delivery cycle to drive quality and a fail-fast
mindset. When technical debt exceeds a predefined limit
(for example, five bugs per engineer), encourage feature
teams to suspend feature work until the technical debt is
paid down.

Team autonomy and enterprise alignment are concerned
with what, how, and why we build. You need a common ca-
dence, or heartbeat, across your organization to enable all
leadership and feature teams to collaborate transparent-
ly and effectively. The most effective feature teams own a
feature from idea to production, with autonomy on how they
develop and support their features.

Production-first is a mindset that does not differentiate
how features and bugs are handled during development,
testing, and operational support. Everything should be au-
tomated, versioned, and fine-tuned in production. Lean on
ring-based deployment and rings [10] to limit the blast radius
of feature changes in production, remediate all issues at the
root cause level, and remember to be transparent about is-
sues, root cause, and resolution (as a user, I’m much more
understanding if I have an insight into issues).

Infrastructure as a flexible resource describes how solu-
tion architectures are adapted to the cloud, containerization,
and microservices. Adopt a pragmatic transformation that
makes sense for your organization, goals, products, and cul-
ture. As with the previous habits, it’s important to favor au-
tonomy over a descriptive architecture and not to transform
everything all at once.

Getting started
The last visualization combines all of the above and sug-
gests five steps to getting started with DevOps:

I prefer to start with the assessment to help identify key ar-
eas that can be improved.

minimal time to recover (MTTR), and remediation of issues
at the root level. Lastly, technology, which is an enabler, is
the focus of the next poster.

Technology
Here’s a companion of the practices poster, focused on
technology:

Version control manages versions of your application, con-
figuration, infrastructure, and other code. It enables team
collaboration and monitoring activities such as deployments.
Top performers use topic branches for short-term isolation,
continuously merge changes into master, review, and audit
using Git pull requests, and version everything.

Testing must be viewed as a continuous activity, embed-
ded into both the developer workflow and the continuous in-
tegration (CI) and continuous delivery (CD) pipeline.

The cloud enables you to effectively provision your infra-
structure and move as fast as necessary.

Lastly, monitoring enables you to form a hypothesis, val-
idate or disprove experiments, proactively detect issues as
they occur, and understand application health.

The black bar on the right of the poster lists products
to consider when you’re investigating technology for your
development, production, common engineering, and oth-
er environments. Provide feedback on the listed products
and regularly update this volatile and opinionated part of
the visual.

Habits
Based on the Moving 65,000 engineers to DevOps with
VSTS [9] story, this poster focuses on the five key habits we
learned about during our transformation. The customer-fo-
cused, team autonomy and enterprise alignment, and shift-
left habits are evolutions of Agile, and the production-first
mindset and infrastructure as a flexible resource are particu-
lar to a DevOps mindset.

Customer-focused is part of our quest to delight customers
and our obsession with delivering customer value. You must

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://www.slideshare.net/WillyPeterSchaub/devconf-moving-65000-microsofties-to-devops-with-visual-studio-team-services

. Visualizing a DevOps mindset

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 19

Which visuals do you like? Which ones add no value?
What is missing? Let’s collaborate [14] to demystify DevOps
and help you and your users shine. Users need to under-
stand that they are not alone and know they can rely on prov-
en practices and real-world learning.

Looking forward to your feedback and pull requests!

Links
[1]	 �https://www.investopedia.com/terms/c/capitalexpenditure.asp
[2]	� https://en.wikipedia.org/wiki/Operating_expense
[3]	 �http://donovanbrown.com/post/what-is-devops
[4]	� https://github.com/wpschaub/DevOps-mindset-essentials/

blob/master/src/presentations/devops-mindset-essentials-
gdbc.pdf

[5]	 �https://globaldevopsbootcamp.com/
[6]	� https://github.com/wpschaub/DevOps-mindset-essentials/

tree/master/src/posters
[7]	 �http://a.co/92KSNxJ
[8]	 �https://aka.ms/devopsassessment
[9]	� https://www.slideshare.net/WillyPeterSchaub/devconf-

moving-65000-microsofties-to-devops-with-visual-studio-
team-services

[10]	 �https://opensource.com/article/18/2/feature-flags-ring-
deployment-model

[11]	� https://www.devops-survey.com/
[12]	� https://aka.ms/devopsassessment
[13]	 �https://t.co/smb82Y4i0M
[14]	 �https://github.com/wpschaub/devOps-mindset-essentials

• �Assessments provide a benchmark of your DevOps mind-
set and performance against the rest of the industry. It’s
important to understand where you’re doing well and where
investment will help take you to the next level. Both the
DORA [11] and Microsoft [12] DevOps Assessments are
great starting points. In addition, gather metrics to use as a
base to measure progress—for example, deployment fre-
quency, lead time for changes, mean time to repair, and
change failure rate.

• �People and culture are your biggest challenges. Every-
one needs to buy into the transformation, understand how

they will be affected,
encourage transpar-
ency, be engaged,
and take full re-
sponsibility for their
value streams. This
includes leadership,
which needs to be

supportive, inspirational, empowering, and drive a clear
vision. You’ll make or break the transformation as a team.

• �Process is your engineering system, which enables the
teams to manage live site incidents, use lean management
and development, and continuously deliver value. A com-
mon engineering system introduces consistency, empow-
ers feature teams, and enables and encourages everyone
to support and contribute to each other. Your top process
goals should include a focus on quality, a loosely coupled
architecture to enable scaling, lightweight management,
automation, multiple releases per day, and celebration of
success as a team and as an organization.

• �Products are the easiest link in the chain. They enable ev-
eryone to focus on what’s important: Delivering value to
end users.

• �Value is all about delighting users. Key performance indica-
tors include deployment frequency, lead time for changes,
change failure rate, and time to recover.

Whether you tackle all these steps all at once (“big bang”),
step-by-step (“peeling an onion”), or gradually innovate your
value chain across all steps (“broad-spectrum innovation”) is
your choice. Just be pragmatic.

Adapted from “Visualizing a DevOps mindset” on Opensource.com, published
under a Creative Commons Attribution Share-Alike 4.0 International License
at https://opensource.com/article/18/8/visualizing-devops-essentials-mindset.

Without committed people and
an experimental culture, the rest
of the DevOps transformation
journey is futile.

Improvement is possible for everyone if leadership
provides consistent support and team members
commit themselves to the work. -Accelerate: The
Science of Lean Software and DevOps [13], by
Nicole Forsgren, Jez Humble, and Gene Kim

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/wpschaub/devOps-mindset-essentials
https://www.investopedia.com/terms/c/capitalexpenditure.asp
https://en.wikipedia.org/wiki/Operating_expense
http://donovanbrown.com/post/what-is-devops
https://github.com/wpschaub/DevOps-mindset-essentials/blob/master/src/presentations/devops-mindset-essentials-gdbc.pdf
https://github.com/wpschaub/DevOps-mindset-essentials/blob/master/src/presentations/devops-mindset-essentials-gdbc.pdf
https://github.com/wpschaub/DevOps-mindset-essentials/blob/master/src/presentations/devops-mindset-essentials-gdbc.pdf
https://globaldevopsbootcamp.com/
https://github.com/wpschaub/DevOps-mindset-essentials/tree/master/src/posters
https://github.com/wpschaub/DevOps-mindset-essentials/tree/master/src/posters
http://a.co/92KSNxJ
https://aka.ms/devopsassessment
https://www.slideshare.net/WillyPeterSchaub/devconf-moving-65000-microsofties-to-devops-with-visual-studio-team-services
https://www.slideshare.net/WillyPeterSchaub/devconf-moving-65000-microsofties-to-devops-with-visual-studio-team-services
https://www.slideshare.net/WillyPeterSchaub/devconf-moving-65000-microsofties-to-devops-with-visual-studio-team-services
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://www.devops-survey.com/
https://aka.ms/devopsassessment
https://t.co/smb82Y4i0M
https://github.com/wpschaub/devOps-mindset-essentials
https://www.devops-survey.com/
https://aka.ms/devopsassessment
https://opensource.com/article/18/8/visualizing-devops-essentials-mindset
https://t.co/smb82Y4i0M

Deploying new releases: Feature flags or rings? . . .

20	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

DevOps enables us to deliver at speed,
learn from production

feedback, make better educated decisions, and increase
customer satisfaction, acquisition, and retention. We need
to fail fast on features that result in an indifferent or nega-
tive user experience and focus on features that make a pos-
itive difference. Progressive exposure is a DevOps practice,
based on feature flags and ring-based deployment, that al-
lows us to expose features to selected users in production,
to observe and validate before exposing them to all users.

You’re probably asking yourself whether to use ring-
based deployments, feature flags, or both to support progres-
sive exposure in your environment. Let’s start by exploring
these strategies.

Rings and feature flags
Ring-based deployment was first discussed in Jez Hum-
ble’s book, Continuous Delivery [1], as canary deployments.
Rings limit impact on end users while gradually deploying
and confirming change in production. With rings, we evalu-
ate the impact, or “blast radius,” through observation, testing,
diagnosis of telemetry, and most importantly, user feedback.
Rings make it possible to progressively deploy binary bits
and have multiple production releases running in parallel.
You can gather feedback without the risk of affecting all us-
ers, decommission old releases, and distribute new releases
when you are confident that everything is working properly.

The following diagram show an implementation of the ring-
based deployment process:

When your developers complete a pull request with pro-
posed changes to the master branch, (1) a continuous
integration build performs the build, unit testing, and trig-
gers an automatic release to the Canaries environment
in production. When you’re confident that the release is
ready for user acceptance and exploratory testing in pro-
duction, (2) you approve the release to the Early Adopters
ring. Similarly, when you’re confident that the release is
ready for prime time, (3) you approve the release to the
Users ring. The names and number of rings depends on
your preferences, but it’s important that all rings are using
the same production environment.

Feature flags were first popularized by Martin Fowler [2].
Flags decouple release deployment and feature exposure,
give run-time control down to the individual user, and enable
hypothesis-driven development. Using and tying feature

flags back to telemetry allows you to
decide if a feature helps to increase
user satisfaction, acquisition, and
retention. You can also use feature
flags to do an emergency roll-back,
hide a feature in a region where it
shouldn’t be available, or enable te-
lemetry as needed.

A typical feature flag implementation
is based on (1) a management service

 Deploying new releases:
Feature flags or rings?
Use deployment rings to progressively expose a new release,
and feature flags to fine-tune each release in production.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.continuousdelivery.com/
https://martinfowler.com/bliki/FeatureToggle.html

. Deploying new releases: Feature flags or rings?

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 21

Adapted from “Deploying new releases: Feature flags or rings?” on Opensource.
com, published under a Creative Commons Attribution Share-Alike 4.0
International License at https://opensource.com/article/18/2/feature-flags-
ring-deployment-model.

that defines the flag, (2) a run-time query to figure out the
value of the flag, and (3) an if-else programming construct,
as shown:

Both the feature flags and ring-based deployment model
strategies are invaluable, whether you’re working with an
open source extension [3] community or moving 65,000 en-
gineers to DevOps [4].

Back to the question: Should you use feature
flags, rings, or both?
The quote “You do not respond to a mosquito bite with a
hammer,” by Patrick L.O. Lumumba, comes to mind.

We use both rings and feature flags to progressively ex-
pose a new release in production, whether it’s a hot fix
or feature release for our commercial product, affecting
65,000 engineers and eventually hundreds of thousands
of users as the blast or impact radius of the release in-
creases. Feature flags allow us to progressively reveal [5]
new features of each release, perform A/B testing, and ex-
periment in production. Because we’re working with cloud
services and extensions, we have a continuous feedback
loop with our users and the ability to fine-tune each re-
lease by toggling feature flags.

For our open source community extensions, we primarily
use ring-based deployment to progressively expose a new
release to canary, early adopters, and users, as outlined in
the table below. We’re gradually implementing feature flags
in selected extensions to experiment [6] and gather experi-
ence in fine-tuning features and managing the associated
technical debt.

The quasi-continuous delivery mode [7] is another ex-
ample of using both strategies to deploy new features
to 1% of the users in the first ring, then 20%, 50%, and
100%, continuing with the same pattern to the second
ring, and so on.

You can use either ring-based deployment or feature
flags to implement the progressive exposure DevOps
practice—they are symbiotic. It all boils down to how cau-
tious you want to be when rolling out releases and expos-
ing features. I recommend that you experiment with both.
Start by using deployment rings to progressively expose

a new release, then use feature flags to fine-tune each
release in production.

I think of a when using the ring-based deployment
model to deploy a release and a when using feature
flags to fine-tune the release.

Happy ringing and flagging!
Comparing rings with flags within the context of our open

source extensions [8]:

DEPLOYMENT RING FEATURE FLAG
Progressive
exposure

Yes Yes

A/B Testing All users within ring All or selected users
Cost Production

environment
maintenance

Feature Flag
database and code
maintenance

Primary use Manage impact
“blast radius”

Show or hide
features in a release

Blast radius -
Canaries

0-9 canary users 0, all, or specific
canary users

Blast radius -
Early Adopters

10-100 early adopter
users

0, all, or specific
early adopter users

Blast radius -
Users

10000+ of users 0, all, or specific
users

For more details, refer to Software Development with Feature
Toggles [9], Phase the roll-out of your application through
rings [10], and Our Feature Flag Investigations [11].

Links
[1]	� https://www.continuousdelivery.com/
[2]	 �https://martinfowler.com/bliki/FeatureToggle.html
[3]	� https://aka.ms/vsarsolutions#Extensions
[4]	� https://aka.ms/devops
[5]	 �https://youtu.be/ed3ziUDq_n0
[6]	� https://blogs.msdn.microsoft.com/visualstudioalmrangers/

tag/launchdarkly/
[7]	 �https://code.facebook.com/posts/270314900139291/rapid-

release-at-massive-scale/
[8]	� https://aka.ms/vsarsolutions#Extensions
[9]	� https://msdn.microsoft.com/en-ca/magazine/dn683796.

aspx
[10]	� https://docs.microsoft.com/en-us/vsts/articles/phase-

rollout-with-rings
[11]	 �https://blogs.msdn.microsoft.com/visualstudioalmrangers/

tag/launchdarkly/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://aka.ms/vsarsolutions%23Extensions
https://aka.ms/devops
https://youtu.be/ed3ziUDq_n0
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://aka.ms/vsarsolutions%23Extensions
https://msdn.microsoft.com/en-ca/magazine/dn683796.aspx
https://docs.microsoft.com/en-us/vsts/articles/phase-rollout-with-rings
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/
https://www.continuousdelivery.com/
https://martinfowler.com/bliki/FeatureToggle.html
https://aka.ms/vsarsolutions%23Extensions
https://aka.ms/devops
https://youtu.be/ed3ziUDq_n0
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://aka.ms/vsarsolutions%23Extensions
https://msdn.microsoft.com/en-ca/magazine/dn683796.aspx
https://msdn.microsoft.com/en-ca/magazine/dn683796.aspx
https://docs.microsoft.com/en-us/vsts/articles/phase-rollout-with-rings
https://docs.microsoft.com/en-us/vsts/articles/phase-rollout-with-rings
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/
https://blogs.msdn.microsoft.com/visualstudioalmrangers/tag/launchdarkly/

What’s the cost of feature flags? . . .

22	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

In a previous article, I introduced fea-
ture flags and ring-based

deployments, both enablers for the DevOps practice of
progressive exposure.

Progressive exposure enables us to mitigate the im-
pact of changes as they occur, perform iterative experi-
ments, assess features, and get rapid feedback on every
change—all in production. Feature flags, for example,
enable you to perform short-lived experiments, isolate
unfinished work, fine-tune
continuous releases, and
dynamically manage long-
lived operational configura-
tions and permissions.

It’s a practice that not only
leads to happy customers but
enables us to create effective
and motivated feature teams.

You’re probably asking,
“What’s the catch?”

For ring-based deploy-
ments, your primary cost is
to manage the production environments covered by the
rings with a “production-first” mindset. You need to mini-
mize the “blast radius” for each release, monitor each re-
lease, and mitigate root issues quickly. For feature flags,
you need to manage your feature flag product, manage
technical debt, and develop an insight into the implications
of simply “flipping a flag.”

Let’s explore some of the costs of feature flags.

Product investment and operational cost
You need to investigate and find the right feature flag solu-
tion for your environment. Some important considerations
include seamless integration with your DevOps process
and products, simple and cost-effective management of
flags, ability to perform an emergency roll-back, and sup-
port for auditing, fine-tuned permissions, and security. For
example, if you’re managing feature flags down to a spe-
cific user, you’re likely capturing personal information and

entering the realm of the new Global Data Protection Reg-
ulation (GDPR) [1].

Don’t build your own custom feature flag solution.
There are enough options available, such as the Feature-
Toggle [2], NFeature [3], FeatureSwitcher [4], togglz [5],
and ff4j [6] frameworks, and software as a service (SaaS)
such as LaunchDarkly [7]. With the latter, you delegate
maintenance, updates, and infrastructure to your SaaS pro-
vider so you can focus product features and deliver value to

your customers.

Technical debt
With feature flags, we break
up a product into indepen-
dent parts that can be re-
leased separately, giving
our feature teams and busi-
ness control over who gets
which feature and when.
By breaking up your prod-
uct, you’re adding a level
of complexity, which needs

maintenance to avoid stale flags and associated code.
For example, when we add a simple ON|OFF feature

flag to isolate a feature, we’re adding an if-else code con-
struct and doubling our code and test paths, as shown
below. If it’s an experimental feature flag, its lifespan is
typically weeks, after which it needs to be removed to
avoid technical debt. For other feature flags, the lifespan
may be longer; however, the same principle applies: Re-
move the feature flags and associated code as soon as
you do not need them.

When we add a multi-value OFF|1|2 feature flag, we multi-
ply the feature code and test paths. After adding two feature

 What’s the cost of
feature flags?
Here’s what you need to know about managing feature flags in a
progressive exposure environment.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://github.com/jason-roberts/FeatureToggle
https://github.com/benaston/NFeature
https://github.com/mexx/FeatureSwitcher
https://github.com/togglz/togglz
https://github.com/clun/ff4j
https://www.launchdarkly.com/

. What’s the cost of feature flags?

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 23

flags, we are maintaining two features, with five code and
test paths. Every path needs to be validated and tested with
every change as we have no guarantee when a feature flag
will be toggled.

But there’s more: Let’s add another simple ON|OFF fea-
ture flag for a new feature for which we would like to
collect telemetry to examine a hypothesis. It again dou-
bles the feature code and test paths, incrementing the
paths that need to be validated to seven. More impor-
tantly, it introduces a dependency on a specific version
of the second feature. Do we wait for the dependency
to be enabled? Do we rely on an isolated and potentially
incomplete feature? Who ensures that a feature flag is
not inadvertently toggled to satisfy a dependency? Great
questions, which need to be answered as part of your
process transformation to encourage flexible schedul-
ing, iterative experiments, and close team collaboration
and to facilitate real-time ownership and management of
these challenges.

Imagine a product with hundreds of feature flags. How do
you identify stale feature flags and associated code and
test paths adding to our technical debt (cost)? How do you
convince your feature teams to change and remove code
from a fully functional product? The feature teams need to
own the feature from sunrise (idea) to sunset (deprecate),
use a common engineering process, and apply consistent
code and naming conventions. Identifying and removing
stale feature flags and code must be simple.

Let’s have a quick look at an extract from the Roll-up
Board [8] extension, which shows the ON and OFF code
paths for a feature flag that checks the value of activateFF.

In the feature flag admin system, the feature has a friendly
display name, Display Logs, and display-logs flag.

At a glance, the relationship between activateFF and dis-
play-logs is not obvious. As an engineer, I’m reluctant to
make changes to the code without further investigation (cost).

Understanding of the implications of flipping a flag
There’s one more important cost you need to consider. Flip-
ping a feature flag is simple—the change ripples through
production quickly, and your users start using your new fea-
ture with excitement. You’re happy with the feature you just
enabled, but are you confident that you understand all the
side effects of flipping the flag?

We often share the following two experiences, which
demonstrate that even with the best process, we can have
bad days that result in bad customer experiences.
• �A rough patch [9] —The team flipped a feature flag at a big

marketing event when corporate vice president Brian Harry
was on stage. As described in the blog post, it didn’t go
well. The product experienced unexpected authentication
failures and eventually buckled under load.

• �How we learned about the 503 meltdown [10] —The team
enabled feature flags in one of their most popular exten-
sions. Users experienced 503 errors, followed by severe
performance issues, and eventually the Azure Functions
handling feature flags failed under load.

In both cases, there was a “failure under load.” It’s import-
ant to flip a feature flag in a canary or early adopter envi-
ronment and simulate anticipated loads a few days before
flipping the feature flag for all users. This is particularly true
for big marketing events, where first impressions count.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/ALM-Rangers/Roll-Up-Board-Widget-Extension
https://aka.ms/bh-ff-sos
https://aka.ms/vsar-ff-sos

What’s the cost of feature flags? .

24	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

References
• �A Rough Patch [11]
• �Continuous Delivery by Jez Humble [12]
• �Feature Toggles by Martin Fowler [13]
• �How we checked and fixed the 503 error and performance

issue in our Azure Function [14]
• �Moving 65,000 engineers to DevOps [15]
• �Phase the features of your application with feature flags [16]
• �Phase the roll-out of your application through rings [17]

Links
[1]	� https://ec.europa.eu/commission/priorities/justice-and-

fundamental-rights/data-protection/2018-reform-eu-data-
protection-rules_en

[2]	� https://github.com/jason-roberts/FeatureToggle
[3]	� https://github.com/benaston/NFeature
[4]	� https://github.com/mexx/FeatureSwitcher
[5]	� https://github.com/togglz/togglz
[6]	� https://github.com/clun/ff4j
[7]	� https://www.launchdarkly.com/
[8]	� https://github.com/ALM-Rangers/Roll-Up-Board-Widget-

Extension
[9]	 �https://aka.ms/bh-ff-sos
[10]	� https://aka.ms/vsar-ff-sos
[11]	� https://aka.ms/bh-ff-sos
[12]	� https://www.continuousdelivery.com/
[13]	� https://martinfowler.com/bliki/FeatureToggle.html
[14]	� https://aka.ms/vsar-ff-sos
[15]	� https://aka.ms/devops
[16]	� https://docs.microsoft.com/en-us/vsts/articles/phase-

features-with-feature-flags
[17]	� https://www.visualstudio.com/en-us/articles/phase-rollout-

with-rings

A solid engineering process and live telemetry enabled us
to detect the issues as they occurred, identify the root cause,
and mitigate the impact.

It’s important to learn from these mistakes, explore po-
tential implications, have user empathy, and be transpar-
ent about issues, root cause, and resolution of bad days

like ours. Users with an insight are typically more toler-
ant and supportive of your continuous journey of learning
and innovation.

Once you are cognizant of and manage the risks and
costs, your feature teams will be able to progressively
expose releases using ring-based deployments and fine-
tune them using feature flags.

Enjoy observing your motivated feature teams—and more
importantly, your happy customers!

Adapted from “What's the cost of feature flags?” on Opensource.com,
published under a Creative Commons Attribution Share-Alike 4.0 International
License at https://opensource.com/article/18/7/does-progressive-exposure-really-
come-costx.

DevOps is a journey of continuous
learning and improvement, with a
destination you never quite get to!

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://aka.ms/bh-ff-sos
https://www.continuousdelivery.com/
https://martinfowler.com/bliki/FeatureToggle.html
https://aka.ms/vsar-ff-sos
https://aka.ms/devops
https://docs.microsoft.com/en-us/vsts/articles/phase-features-with-feature-flags
https://www.visualstudio.com/en-us/articles/phase-rollout-with-rings
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://github.com/jason-roberts/FeatureToggle
https://github.com/benaston/NFeature
https://github.com/mexx/FeatureSwitcher
https://github.com/togglz/togglz
https://github.com/clun/ff4j
https://www.launchdarkly.com/
https://github.com/ALM-Rangers/Roll-Up-Board-Widget-Extension
https://github.com/ALM-Rangers/Roll-Up-Board-Widget-Extension
https://aka.ms/bh-ff-sos
https://aka.ms/vsar-ff-sos
https://aka.ms/bh-ff-sos
https://www.continuousdelivery.com/
https://martinfowler.com/bliki/FeatureToggle.html
https://aka.ms/vsar-ff-sos
https://aka.ms/devops
https://docs.microsoft.com/en-us/vsts/articles/phase-features-with-feature-flags
https://docs.microsoft.com/en-us/vsts/articles/phase-features-with-feature-flags
https://www.visualstudio.com/en-us/articles/phase-rollout-with-rings
https://www.visualstudio.com/en-us/articles/phase-rollout-with-rings
http://Opensource.com
https://opensource.com/article/18/7/does-progressive-exposure-really-come-cost
https://opensource.com/article/18/7/does-progressive-exposure-really-come-cost

. Get Involved | Additional Resources

Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com	 25

Get Involved

Additional Resources

If you find these articles useful, get involved! Your feedback helps improve the status
quo for all things DevOps.
Contribute to the Opensource.com DevOps resource collection, and join the team of
DevOps practitioners and enthusiasts who want to share the open source stories
happening in the world of IT.
The Open Source DevOps team is looking for writers, curators, and others who can help
us explore the intersection of open source and DevOps. We’re especially interested in
stories on the following topics:

• �DevOps practical how to’s
• �DevOps and open source
• �DevOps and talent
• �DevOps and culture
• �DevSecOps/rugged software

Learn more about the Opensource.com DevOps team: https://opensource.com/devops-team

The open source guide to DevOps monitoring tools
This free download for sysadmin observability tools includes analysis of open source
monitoring, log aggregation, alerting/visualizations, and distributed tracing tools.
Download it now: The open source guide to DevOps monitoring tools

The ultimate DevOps hiring guide
This free download provides advice, tactics, and information about the state of DevOps
hiring for both job seekers and hiring managers.
Download it now: The ultimate DevOps hiring guide

The Open Organization Guide to IT Culture Change
In The Open Organization Guide to IT Culture Change, more than 25 contributors from
open communities, companies, and projects offer hard-won lessons and practical ad-
vice on how to create an open IT department that can deliver better, faster results and
unparalleled business value.
Download it now: The Open Organization Guide to IT Culture Change

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://Opensource.com
https://opensource.com/devops-team
http://Opensource.com
https://opensource.com/devops-team
https://opensource.com/downloads/devops-monitoring-guide
https://opensource.com/downloads/devops-hiring-guide
https://opensource.com/open-organization/resources/culture-change
https://opensource.com/open-organization/resources/culture-change

26	 Starting a DevOps transformation ... CC BY-SA 4.0 ... Opensource.com

Write For Us . . .

Would you like to write for Opensource.com? Our editorial calendar includes upcoming themes,
community columns, and topic suggestions: https://opensource.com/calendar
Learn more about writing for Opensource.com at: https://opensource.com/writers
We're always looking for open source-related articles on the following topics:

Big data: Open source big data tools, stories, communities, and news.
Command-line tips: Tricks and tips for the Linux command-line.
Containers and Kubernetes: Getting started with containers, best practices,
security, news, projects, and case studies.
Education: Open source projects, tools, solutions, and resources for educators,
students, and the classroom.
Geek culture: Open source-related geek culture stories.
Hardware: Open source hardware projects, maker culture, new products, howtos,
and tutorials.
Machine learning and AI: Open source tools, programs, projects and howtos for
machine learning and artificial intelligence.
Programming: Share your favorite scripts, tips for getting started, tricks for
developers, tutorials, and tell us about your favorite programming languages and
communities.
Security: Tips and tricks for securing your systems, best practices, checklists,
tutorials and tools, case studies, and security-related project updates.

Write for Us

Keep in touch!
Sign up to receive roundups of our best articles,

giveaway alerts, and community announcements.

Visit opensource.com/email-newsletter to subscribe.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://Opensource.com
https://opensource.com/calendar
http://Opensource.com
https://opensource.com/writers
http://opensource.com/email-newsletter

	001-001_Cover
	002-002_Downloads_Promo
	003-003_AboutOS
	004-004_About_Author
	005-005_TOC
	006-006_Intro
	007-009_S1_Ch1_DevOps_Mindset
	010-012_S1_Ch2_DevOps_Transform
	013-016_S2_Ch1_DNA_DevOps
	017-019_S2_Ch2_Visualize
	020-021_S3_Ch1_NewReleases
	022-024_S3_Ch2_Cost
	025-025_Get_Involved
	026-026_Write_for_Us

