
Running Kubernetes on your
Raspberry Pi homelab

Opensource.com

Build your own cloud at home and
start experimenting with Kubernetes

https://opensource.com/

OPENSOURCE.COM .

2 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

. ABOUT THE AUTHOR

CHRIS COLLINS

FOLLOW CHRIS COLLINS

Twitter: @ChrisInDurham

CHRIS COLLINS IS AN SRE at Red Hat and a Community Moderator for
OpenSource.com. He is a container and container

orchestration, DevOps, and automation evangelist, and will talk with anyone interested
in those topics for far too long and with much enthusiasm.
Prior to working at Red Hat, Chris spent thirteen years with Duke University, variously
as a Linux systems administrator, web hosting architecture and team lead, and an
automation engineer.
In his free time, Chris enjoys brewing beer,
woodworking, and being a general-purpose
geek.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/ChrisInDurham
https://opensource.com/

CONTENTS .

4 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

CHAPTERS

Modify a disk image to create a Raspberry Pi-based 6
homelab

Build a Kubernetes cluster with the Raspberry Pi 10

How Cloud-init can be used for your Raspberry Pi homelab 16

Add nodes to your private cloud using Cloud-init 18

Turn your Raspberry Pi homelab into a network filesystem 22

Provision Kubernetes NFS clients on a Raspberry Pi 26
homelab

Use this script to find a Raspberry Pi on your network 31

Manage your Kubernetes cluster with Lens 33

Install a Kubernetes load balancer on your Raspberry Pi 36
homelab with MetalLB

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. INTRODUCTION

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

THE MOST EFFECTIVE WAY TO LEARN a new technology
is to use it. Building a homelab

has become increasingly accessible thanks to the affordability and versatility of
the Raspberry Pi single-board computer. There are thousands of things you can
do with a Raspberry Pi, including experimenting with Kubernetes.

Kubernetes was initially released in 2014 and has since defined how we build
and interact with cloud technology. But if you think Kubernetes is too elusive
or challenging to grok outside of an enterprise environment, think again. In
this eBook, author Chris Collins demonstrates how to get started running
Kubernetes on your Raspberry Pi. He also provides several different techniques
for optimizing your homelab’s Kubernetes clusters. Each section of this guide
can be treated in isolation or as a holistic project. Regardless of your day job,
reading these tutorials and trying them out at your own pace is sure to boost your
cloud technology prowess.

Introduction

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/raspberry-pi
https://opensource.com/tags/raspberry-pi
https://opensource.com/resources/what-is-kubernetes

6 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

MODIFY A DISK IMAGE TO CREATE A RASPBERRY PI-BASED HOMELAB .

BUILDING A HOMELAB [1] can be a
fun way to

entertain yourself while learning new concepts and experi-
menting with new technologies. Thanks to the popularity of
single-board computers (SBCs), led by the Raspberry Pi [2],
it is easier than ever to build a multi-computer lab right from
the comfort of your home. Creating a “private cloud at home”
is also a great way to get exposure to cloud-native technolo-
gies for considerably less money than trying to replicate the
same setup with a major cloud provider.

This article explains how to modify a disk image for the
Raspberry Pi or another SBC, pre-configure the host for
SSH (secure shell), and disable the service that forces inter-
action for configuration on first boot. This is a great way to
make your devices “boot and go,” similar to cloud instances.
Later, you can do more specialized, in-depth configurations
using automated processes over an SSH connection.

Also, as you add more Pis to your lab, modifying disk im-
ages lets you just write the image to an SD card, drop it into
the Pi, and go!

Decompress and mount the image
For this project, you need to modify a server disk image. I
used the Fedora Server 31 ARM [3] image during testing. Af-
ter you download the disk image and verify its checksum [4],

you need to decompress and mount it to a location on the host
computer’s file system so you can modify it as needed.

You can use the xz [5] command to decompress the Fedo-
ra Server image by using the --decompress argument:

xz --decompress Fedora-Server-armhfp-X-y.z-sda.raw.xz

This leaves you with a raw, decompressed disk image
(which automatically replaces the .xz compressed file). This
raw disk image is just what it sounds like: a file containing
all the data that would be on a formatted and installed disk.
That includes partition information, the boot partition, the
root partition, and any other partitions. You need to mount
the partition you intend to work in, but to do that, you need in-
formation about where that partition starts in the disk image
and the size of the sectors on the disk, so you can mount the
file at the right sector.

Luckily, you can use the fdisk [6] command on a disk im-
age just as easily as on a real disk and use the --list or -l
argument to view the list of partitions and their information:

Use fdisk to list the partitions in the raw image:

$ fdisk -l Fedora-Server-armhfp-31-1.9-sda.raw

Di sk Fedora-Server-armhfp-X-y.z-sda.raw: 3.2 GiB, 3242196992 bytes,

6332416 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xdaad9f57

Device Boot Start End Sectors Size Id Type

Fedora-Server-armhfp-X-y.z-sda.raw1 8192 163839 155648 76M c W95 F

Fedora-Server-armhfp-X-y.z-sda.raw2 * 163840 1163263 999424 488M 83 Linux

Fedora-Server-armhfp-X-y.z-sda.raw3 1163264 6047743 4884480 2.3G 83 Linux

All the information you need is available in this output. Line 3
indicates the sector size, both logical and physical: (512
bytes / 512 bytes).

The list of devices shows the partitions inside the raw disk
image. The first one, Fedora-Server-armhfp-X-y.z-sda.raw1

Modify a disk image to create
a Raspberry Pi-based homelab
Create a “private cloud at home” with a Raspberry Pi or other single-board computer.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/3/home-lab
https://opensource.com/resources/raspberry-pi
https://arm.fedoraproject.org/
https://arm.fedoraproject.org/verify.html
https://tukaani.org/xz/
https://en.wikipedia.org/wiki/Fdisk

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

. MODIFY A DISK IMAGE TO CREATE A RASPBERRY PI-BASED HOMELAB

Enable non-native arch chroot with DNF, adding new binary

format information

Output suppressed for brevity

$ dnf install qemu-user-static

$ systemctl restart systemd-binfmt.service

With this, you should be able to change root to the mounted
disk image and run the uname command to verify that ev-
erything is working:

sudo chroot ~/mnt/ /usr/bin/uname -a -r

Li nux marvin 5.5.16-200.fc31.x86_64 #1 SMP Wed Apr 8 16:43:33

UTC 2020 armv7l armv7l armv7l GNU/Linux

Running uname from within the changed root shows armv7l
in the output—the architecture of the raw disk image—and
not the host machine. Everything is working as expected,
and you can continue on to modify the image.

Modify the disk image
Now that you can change directly into the ARM-based
disk image and work in that environment, you can begin to
make changes to the image itself. You want to set up the
image so it can be booted and immediately accessed with-
out having to do any additional setup directly on the Rasp-
berry Pi. To do this, you need to install and enable sshd
(the OpenSSH daemon) and add the authorized keys for
SSH access.

And to make this behave more like a cloud environment
and realize the dream of a private cloud at home, add a lo-
cal user, give that user sudo rights, and (to be just like the
cloud heavyweights) allow that user to use sudo without a
password.

So, your to-do list is:

• Install and enable SSHD (SSHD is already installed and
enabled in the Fedora ARM image, but you may need to
do this manually for your distribution)

• Set up a local user
• Allow the local user to use sudo (without a password,

optional)
• Add authorized keys
• Allow root to SSH with the authorized keys (optional)

I use the GitHub feature that allows you to upload your pub-
lic SSH keys and make them available at https://github.
com/<your_github_username>.keys [9]. I find this to be
a convenient way to distribute public keys, although I am
paranoid enough that I always check that the downloaded
keys match what I am expecting. If you don’t want to use
this method, you can copy your public keys into the chroot
directly from your host computer, or you can host your keys
on a web server that you control in order to use the same
workflow.

is no doubt the bootloader partition because it is the first, small
(only 76MB), and type W95 FAT32 (LBA), as identified by the
Id “c,” a FAT32 partition for booting off the SD card.

The second partition is not very large either, just 488MB.
This partition is a Linux native-type partition (Id 83), and it
probably is the Linux boot partition containing the kernel and
initramfs [7].

The third partition is what you probably want: it is 2.3GB,
so it should have the majority of the distribution on it, and it is
a Linux-native partition type, which is expected. This should
contain the partition and data you want to modify.

The third partition starts on sector 1163264 (indicated by
the “Start” column in the output of fdisk), so your mount off-
set is 595591168, calculated by multiplying the sector size
(512) by the start sector (1163264) (i.e., 512 * 1163264). This
means you need to mount the file with an offset of 595591168
to be in the right place at the mount point.

ARMed (see what I did there?) with this information, you can
now mount the third partition to a directory in your homedir:

$ mkdir ~/mnt

$ sudo mount -o loop,offset=595591168

Fedora-Server-armhfp-X-y.z-sda.raw ~/mnt

$ ls ~/mnt

Work directly within the disk image
Once the disk image has been decompressed and mounted
to a spot on the host computer, it is time to start modifying
the image to suit your needs. In my opinion, the easiest way
to make changes to the image is to use chroot to change the
working root of your session to that of the mounted image.
There’s a tricky bit, though.

When you change root, your session will use the binaries
from the new root. Unless you are doing all of this from an ARM
system, the architecture of the decompressed disk image will
not be the same as the host system you are using. Even inside
the chroot, the host system will not be able to make use of bina-
ries with a different architecture. At least, not natively.

Luckily, there is a solution: qemu-user-static. From the
Debian Wiki [8]:

“[qemu-user-static] provides the user mode
emulation binaries, built statically. In this mode
QEMU can launch Linux processes compiled
for one CPU on another CPU… If binfmt-
support package is installed, qemu-user-static
package will register binary formats which the
provided emulators can handle, so that it will
be possible to run foreign binaries directly.”

This is exactly what you need to be able to work in the
non-native architecture inside your chroot. If the host system
is Fedora, install the qemu-user-static package with DNF,
and restart systemd-binfmt.service:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/<your_github_username>.keys
https://wiki.debian.org/initramfs
https://wiki.debian.org/RaspberryPi/qemu-user-static

8 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

MODIFY A DISK IMAGE TO CREATE A RASPBERRY PI-BASED HOMELAB .

it starts up. Disable the initial setup, controlled by the service
initial-setup.service:

Disable the initial-setup.service for both the multi-user and

graphical targets

un link /etc/systemd/system/multi-user.target.wants/

initial-setup.service

un link /etc/systemd/system/graphical.target.wants/

initial-setup.service

While you are in the change root, you can make any other
changes you might want for your systems or just leave it
at that and follow the cloud-native workflow of configuration
over SSH after first boot.

Recompress and install the modified image
With these changes to your system completed, all that is left
is to recompress the disk image and install it on an SD card
for your Raspberry Pi.

Make sure to exit the chroot, then unmount the disk image:

$ sudo umount ~/mnt/

Just as you decompressed the image initially, you can use
the xz command again to compress the image. By using
the --keep argument, xz will leave the raw image rath-
er than cleaning it up. While this uses more disk space,
leaving the uncompressed image allows you to make in-
cremental changes to the images you are working with
without needing to decompress them each time. This is
great for saving time while testing and tweaking images
to your liking:

Compress the raw disk image to a .xz file, but keep the raw

disk image

xz --compress Fedora-Server-armhfp-31-1.9-sda.raw --keep

The compression takes a while, so take this time to stand up,
stretch, and get your blood flowing again.

Once the compression is done, the new, modified disk
image can be copied to an SD card to use with a Rasp-
berry Pi. The standard dd method to copy the image to
the SD card works fine, but I like to use Fedora’s arm-im-
age-installer because of the options it provides when
working with unedited images. It also works great for ed-
ited images and is a little more user-friendly than the dd
command.

Make sure to check which disk the SD card is on and use
that for the --media argument:

Use arm-image-installer to copy the modified disk image to the

SD card

ar m-image-installer --image=Fedora-Server-armhfp-X-y.z-sda.raw.xz

 --target=rpi3 --media=/dev/sdc --norootpass --resizefs -y

To start modifying the disk image, chroot into the mounted
disk image again, this time starting a shell so multiple com-
mands can be run:

Output of these commands (if any) are omitted for brevity

$ sudo chroot ~/mnt /bin/bash

Install openssh-server and enable it (already done on Fedora)

$ dnf install -y openssh-server

$ systemctl enable sshd.service

Allow root to SSH with your authorized keys

$ mkdir /root/.ssh

Download, or otherwise add to the authorized_keys file, your

public keys

Replace the URL with the path to your own public keys

$ curl https://github.com/clcollins.keys -o /root/.ssh/

authorized_keys

$ chmod 700 /root/.ssh

$ chmod 600 /root/.ssh/authorized_keys

Add a local user, and put them in the wheel group

Change the group and user to whatever you desire

groupadd chris

useradd -g chris -G wheel -m -u 1000 chris

Download or add your authorized keys

Change the homedir and URL as you've done above

mkdir /home/chris/.ssh

cu rl https://github.com/clcollins.keys -o

/home/chris/.ssh/authorized_keys

chmod 700 /home/chris/.ssh

chmod 600 /home/chris/.ssh/authorized_keys

chown -R chris.chris /home/chris/.ssh/

Allow the wheel group (with your local user) to use suso

without a password

ec ho "%wheel ALL=(ALL) NOPASSWD:ALL" >>

/etc/sudoers.d/91-wheel-nopasswd

This is all that generally needs to be done to set up SSH into
a Raspberry Pi or other single-board computer on first boot.
However, each distribution has its own quirks. For example,
Rasbian already includes a local user, pi, and does not use
the wheel group. So for Raspbian, it may be better to use
the existing user or to delete the pi user and replace it with
another.

In the case of Fedora ARM, the image prompts you to finish
setup on first boot. This defeats the purpose of the changes
you made above, especially since it blocks startup entirely
until setup is complete. Your goal is to make the Raspberry
Pi function like part of a private cloud infrastructure, and that
workflow includes setting up the host remotely via SSH when

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

. MODIFY A DISK IMAGE TO CREATE A RASPBERRY PI-BASED HOMELAB

Now you are all set with a new, modified Fedora Serv-
er ARM image for Raspberry Pis or other single board
computers, ready to boot and immediately SSH into
with your modifications. This method can also be used
to make other changes, and you can use it with oth-
er distributions’ raw disk images if you prefer them to
Fedora. This is a good base to start building a private-
cloud-at-home homelab. In future articles, I will guide
you through setting up a homelab using cloud technolo-
gies and automation.

Further reading
A lot of research went into learning how to do the things in
this article. Two of the most helpful sources I found for learn-
ing how to customize disk images and work with non-native
architectures are listed below. They were extremely helpful

in rounding the corner from “I have no idea what I’m doing”
to “OK, I can do this!”

• How to modify a raw disk image of your custom Linux distro
• Using DNF wiki

Links
[1] https://opensource.com/article/19/3/home-lab
[2] https://opensource.com/resources/raspberry-pi
[3] https://arm.fedoraproject.org/
[4] https://arm.fedoraproject.org/verify.html
[5] https://tukaani.org/xz/
[6] https://en.wikipedia.org/wiki/Fdisk
[7] https://wiki.debian.org/initramfs
[8] https://wiki.debian.org/RaspberryPi/qemu-user-static
[9] https://github.com/<your_github_username>.keys

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.linux.com/news/how-modify-raw-disk-image-your-custom-linux-distro/
https://wiki.mageia.org/en/Using_DNF#Setting_up_a_container_for_a_non-native_architectur
https://opensource.com/article/19/3/home-lab
https://opensource.com/resources/raspberry-pi
https://arm.fedoraproject.org/
https://arm.fedoraproject.org/verify.html
https://tukaani.org/xz/
https://en.wikipedia.org/wiki/Fdisk
https://wiki.debian.org/initramfs
https://wiki.debian.org/RaspberryPi/qemu-user-static
https://github.com/<your_github_username>.keys

10 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI .

KUBERNETES [1] is an enterprise-grade con-
tainer-orchestration system de-

signed from the start to be cloud-native. It has grown to be
the de-facto cloud container platform, continuing to expand
as it has embraced new technologies, including contain-
er-native virtualization and serverless computing.

Kubernetes manages containers and more, from mi-
cro-scale at the edge to massive scale, in both public and
private cloud environments.
It is a perfect choice for a “pri-
vate cloud at home” project,
providing both robust con-
tainer orchestration and the
opportunity to learn about a
technology in such demand
and so thoroughly integrated
into the cloud that its name is
practically synonymous with
“cloud computing.”

Nothing says “cloud” quite
like Kubernetes, and nothing
screams “cluster me!” quite
like Raspberry Pis. Running a local Kubernetes cluster on
cheap Raspberry Pi hardware is a great way to gain experience
managing and developing on a true cloud technology giant.

Install a Kubernetes cluster on Raspberry Pis
This exercise will install a Kubernetes 1.18.2 cluster on three
or more Raspberry Pi 4s running Ubuntu 20.04. Ubuntu
20.04 (Focal Fossa) offers a Raspberry Pi-focused 64-bit
ARM (ARM64) image with both a 64-bit kernel and user-
space. Since the goal is to use these Raspberry Pis for run-
ning a Kubernetes cluster, the ability to run AArch64 contain-
er images is important: it can be difficult to find 32-bit images
for common software or even standard base images. With its
ARM64 image, Ubuntu 20.04 allows you to use 64-bit con-
tainer images with Kubernetes.

AArch64 vs. ARM64; 32-bit vs. 64-bit; ARM vs. x86
Note that AArch64 and ARM64 are effectively the same
thing. The different names arise from their use within dif-

ferent communities. Many container images are labeled
AArch64 and will run fine on systems labeled ARM64. Sys-
tems with AArch64/ARM64 architecture are capable of run-
ning 32-bit ARM images, but the opposite is not true: a 32-bit
ARM system cannot run 64-bit container images. This is why
the Ubuntu 20.04 ARM64 image is so useful.

Without getting too deep in the woods explaining different
architecture types, it is worth noting that ARM64/AArch64

and x86_64 architectures
differ, and Kubernetes nodes
running on 64-bit ARM archi-
tecture cannot run container
images built for x86_64. In
practice, you will find some
images that are not built for
both architectures and may
not be usable in your clus-
ter. You will also need to
build your own images on
an AArch64-based system
or jump through some hoops
to allow your regular x86_64

systems to build AArch64 images. In a future article in the
“private cloud at home” project, I will cover how to build
AArch64 images on your regular system.

For the best of both worlds, after you set up the Kuber-
netes cluster in this tutorial, you can add x86_64 nodes to it
later. You can schedule images of a given architecture to run
on the appropriate nodes by Kubernetes’ scheduler through
the use of Kubernetes taints and tolerations [2].

Enough about architectures and images. It’s time to install
Kubernetes, so get to it!

Requirements
The requirements for this exercise are minimal. You will
need:
• Three (or more) Raspberry Pi 4s (preferably the 4GB RAM

models)
• Install Ubuntu 20.04 ARM64 on all the Raspberry Pis

To simplify the initial setup, read Modify a disk image to
create a Raspberry Pi-based homelab [3] to add a user and

Build a Kubernetes cluster
with the Raspberry Pi
Install Kubernetes on several Raspberry Pis for your own “private cloud at home” container service.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://opensource.com/article/20/5/disk-image-raspberry-pi

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

. BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI

SSH authorized_keys to the Ubuntu image before writing it
to an SD card and installing on the Raspberry Pi.

Configure the hosts
Once Ubuntu is installed on the Raspberry Pis and they are
accessible via SSH, you need to make a few changes before
you can install Kubernetes.

Install and configure Docker
As of this writing, Ubuntu 20.04 ships the most recent ver-
sion of Docker, v19.03, in the base repositories and can
be installed directly using the apt command. Note that the
package name is docker.io. Install Docker on all of the
Raspberry Pis:

Install the docker.io package

$ sudo apt install -y docker.io

After the package is installed, you need to make some
changes to enable cgroups [4] (Control Groups). Cgroups al-
low the Linux kernel to limit and isolate resources. Practically
speaking, this allows Kubernetes to better manage resourc-
es used by the containers it runs and increases security by
isolating containers from one another.

Check the output of docker info before making the follow-
ing changes on all of the RPis:

Check `docker info`

Some output omitted

$ sudo docker info

(...)

 Cgroup Driver: cgroups

(...)

WARNING: No memory limit support

WARNING: No swap limit support

WARNING: No kernel memory limit support

WARNING: No kernel memory TCP limit support

WARNING: No oom kill disable support

The output above highlights the bits that need to be changed:
the cgroup driver and limit support.

First, change the default cgroups driver Docker uses from
cgroups to systemd to allow systemd to act as the cgroups
manager and ensure there is only one cgroup manager in
use. This helps with system stability and is recommended by
Kubernetes. To do this, create or replace the /etc/docker/
daemon.json file with:

Create or replace the contents of /etc/docker/daemon.json to

enable the systemd cgroup driver

$ sudo cat > /etc/docker/daemon.json <<EOF

{

 "exec-opts": ["native.cgroupdriver=systemd"],

 "log-driver": "json-file",

 "log-opts": {

 "max-size": "100m"

 },

 "storage-driver": "overlay2"

}

EOF

Enable cgroups limit support
Next, enable limit support, as shown by the warnings in the
docker info output above. You need to modify the kernel
command line to enable these options at boot. For the Rasp-
berry Pi 4, add the following to the /boot/firmware/cmdline.
txt file:

• cgroup_enable=cpuset
• cgroup_enable=memory
• cgroup_memory=1
• swapaccount=1

Make sure they are added to the end of the line in the
cmdline.txt file. This can be accomplished in one line
using sed:

Append the cgroups and swap options to the kernel command line

Note the space before "cgroup_enable=cpuset", to add a space

after the last existing item on the line

$ sudo sed -i '$ s/$/ cgroup_enable=cpuset cgroup_enable=memory

cgroup_memory=1 swapaccount=1/' /boot/firmware/cmdline.txt

The sed command matches the termination of the line (rep-
resented by the first $), replacing it with the options listed (it
effectively appends the options to the line).

With these changes, Docker and the kernel should be
configured as needed for Kubernetes. Reboot the Raspber-
ry Pis, and when they come back up, check the output of
docker info again. The Cgroups driver is now systemd, and
the warnings are gone.

Allow iptables to see bridged traffic
According to the documentation, Kubernetes needs iptables
to be configured to see bridged network traffic. You can do
this by changing the sysctl config:

Enable net.bridge.bridge-nf-call-iptables and -iptables6

cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF

$ sudo sysctl --system

Install the Kubernetes packages for Ubuntu
Since you are using Ubuntu, you can install the Kubernetes
packages from the Kubernetes.io Apt repository. There is not

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Cgroups

12 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI .

Make sure to use a subnet that is larger than you expect to
need: there are ALWAYS more pods than you initially plan
for! In this example, I will use 10.244.0.0/16, but pick one
that works for you.

With those decisions out of the way, you can initialize the
Control Plane node. SSH or otherwise log into the node you
have designated for the Control Plane.

Initialize the Control Plane
Kubernetes uses a bootstrap token to authenticate nodes
being joined to the cluster. This token needs to be passed
to the kubeadm init command when initializing the Control
Plane node. Generate a token to use with the kubeadm token
generate command:

Generate a bootstrap token to authenticate nodes joining the

cluster

$ TOKEN=$(sudo kubeadm token generate)

$ echo $TOKEN

d584xg.xupvwv7wllcpmwjy

You are now ready to initialize the Control Plane, using the
kubeadm init command:

Initialize the Control Plane

(output omitted)

$ sudo kubeadm init --token=${TOKEN} --kubernetes-version=v1.18.2

--pod-network-cidr=10.244.0.0/16

If everything is successful, you should see something similar
to this at the end of the output:

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a

regular user:

 mkdir -p $HOME/.kube

 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

 sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options

listed at:

 https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the

following on each as root:

ku beadm join 192.168.2.114:6443 --token zqqoy7.9oi8dpkfmqkop2p5 \

--discovery-token-ca-cert-hash sha256:71270ea1372144 22221319

c1bdb9ba6d4b76abfa2506753703ed654a90c4982b

Make a note of two things: first, the Kubernetes kubectl con-
nection information has been written to /etc/kubernetes/

currently a repository for Ubuntu 20.04 (Focal), but Kuber-
netes 1.18.2 is available in the last Ubuntu LTS repository:
Ubuntu 18.04 (Xenial). The latest Kubernetes packages can
be installed from there.

Add the Kubernetes repo to Ubuntu’s sources:

Add the packages.cloud.google.com atp key

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg

| sudo apt-key add -

Add the Kubernetes repo

cat <<EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF

When Kubernetes adds a Focal repository—perhaps when
the next Kubernetes version is released—make sure to
switch to it.

With the repository added to the sources list, install the
three required Kubernetes packages: kubelet, kubeadm,
and kubectl:

Update the apt cache and install kubelet, kubeadm, and kubectl

(Output omitted)

$ sudo apt update && sudo apt install -y kubelet kubeadm kubectl

Finally, use the apt-mark hold command to disable regular
updates for these three packages. Upgrades to Kubernetes
need more hand-holding than is possible with the general
update process and will require manual attention:

Disable (mark as held) updates for the Kubernetes packages

$ sudo apt-mark hold kubelet kubeadm kubectl

kubelet set on hold.

kubeadm set on hold.

kubectl set on hold.

That is it for the host configuration! Now you can move on to
setting up Kubernetes itself.

Create a Kubernetes cluster
With the Kubernetes packages installed, you can continue
on with creating a cluster. Before getting started, you need to
make some decisions. First, one of the Raspberry Pis needs
to be designated the Control Plane (i.e., primary) node. The
remaining nodes will be designated as compute nodes.

You also need to pick a network CIDR [5] to use for
the pods in the Kubernetes cluster. Setting the pod-net-
work-cidr during the cluster creation ensures that the
podCIDR value is set and can be used by the Container
Network Interface (CNI) add-on later. This exercise uses
the Flannel [6] CNI. The CIDR you pick should not over-
lap with any CIDR currently used within your home net-
work nor one managed by your router or DHCP server.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://github.com/coreos/flannel

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

. BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI

admin.conf. This kubeconfig file can be copied to ~/.kube/
config, either for root or a normal user on the master node
or to a remote machine. This will allow you to control your
cluster with the kubectl command.

Second, the last line of the output starting with kubernetes
join is a command you can run to join more nodes to the
cluster.

After copying the new kubeconfig to somewhere your user
can use it, you can validate that the Control Plane has been
installed with the kubectl get nodes command:

Show the nodes in the Kubernetes cluster

Your node name will vary

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

elderberry Ready master 7m32s v1.18.2

Install a CNI add-on
A CNI add-on handles configuration and cleanup of the
pod networks. As mentioned, this exercise uses the Flan-
nel CNI add-on. With the podCIDR value already set, you
can just download the Flannel YAML and use kubectl
apply to install it into the cluster. This can be done on
one line using kubectl apply -f - to take the data from
standard input. This will create the ClusterRoles, Service-
Accounts, and DaemonSets (etc.) necessary to manage
the pod networking.

Download and apply the Flannel YAML data to the cluster:

Download the Flannel YAML data and apply it

(output omitted)

$ curl -sSL https://raw.githubusercontent.com/coreos/flannel/

v0.12.0/Documentation/kube-flannel.yml | kubectl apply -f -

Join the compute nodes to the cluster
With the CNI add-on in place, it is now time to add com-
pute nodes to the cluster. Joining the compute nodes is
just a matter of running the kubeadm join command pro-
vided at the end of the kube init command run to initial-
ize the Control Plane node. For the other Raspberry Pis
you want to join your cluster, log into the host, and run the
command:

Join a node to the cluster - your tokens and ca-cert-hash

will vary

$ sudo kubeadm join 192.168.2.114:6443 --token \

zqqoy7.9oi8dpkfmqkop2p5 --discovery-token-ca-cert-hash \

sha256:71270ea137214422221319c1bdb9ba6d4b76abfa2506753703 \

ed654a90c4982b

Once you have completed the join process on each node,
you should be able to see the new nodes in the output of
kubectl get nodes:

Show the nodes in the Kubernetes cluster

Your node name will vary

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

elderberry Ready master 7m32s v1.18.2

gooseberry Ready <none> 2m39s v1.18.2

huckleberry Ready <none> 17s v1.18.2

Validate the cluster
At this point, you have a fully working Kubernetes clus-
ter. You can run pods, create deployments and jobs, etc.
You can access applications running in the cluster from
any of the nodes in the cluster using Services [7]. You
can achieve external access with a NodePort service or
ingress controllers.

To validate that the cluster is running, create a new
namespace, deployment, and service, and check that the
pods running in the deployment respond as expected.
This deployment uses the quay.io/clcollins/kube-verify:01
image—an Nginx container listening for requests (actual-
ly, the same image used in the article Add nodes to your
private cloud using Cloud-init [8]). You can view the image
Containerfile here [9].

Create a namespace named kube-verify for the deployment:

Create a new namespace

$ kubectl create namespace kube-verify

List the namespaces

$ kubectl get namespaces

NAME STATUS AGE

default Active 63m

kube-node-lease Active 63m

kube-public Active 63m

kube-system Active 63m

kube-verify Active 19s

Now, create a deployment in the new namespace:

Create a new deployment

$ cat <<EOF | kubectl create -f -

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kube-verify

 namespace: kube-verify

 labels:

 app: kube-verify

spec:

 replicas: 3

 selector:

 matchLabels:

 app: kube-verify

 template:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/concepts/services-networking/service/
https://opensource.com/article/20/5/create-simple-cloud-init-service-your-homelab
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile

14 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI .

 targetPort: 8080

EOF

service/kube-verify created

With the service created, you can examine it and get the IP
address for your new service:

Examine the new service

$ kubectl get -n kube-verify service/kube-verify

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kube-verify ClusterIP 10.98.188.200 <none> 80/TCP 30s

You can see that the kube-verify service has been
assigned a ClusterIP (internal to the cluster only) of
10.98.188.200. This IP is reachable from any of your
nodes, but not from outside of the cluster. You can verify
the containers inside your deployment are working by con-
necting to them at this IP:

Use curl to connect to the ClusterIP:

(output truncated for brevity)

$ curl 10.98.188.200

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

Success! Your service is running and Nginx inside the con-
tainers is responding to your requests.

At this point, you have a running Kubernetes cluster on
your Raspberry Pis with a CNI add-on (Flannel) installed and
a test deployment and service running an Nginx webserver.
In the large public clouds, Kubernetes has different ingress
controllers to interact with different solutions, such as the re-
cently-covered Skipper [10] project. Similarly, private clouds
have ingress controllers for interacting with hardware load
balancer appliances (like F5 Networks’ load balancers) or
Nginx and HAProxy controllers for handling traffic coming
into the nodes.

In a future article, I will tackle exposing services in the
cluster to the outside world by installing your own ingress
controller. I will also look at dynamic storage provisioners
and StorageClasses for allocating persistent storage for ap-
plications, including making use of the NFS server you set
up in a previous article, Turn your Raspberry Pi homelab into
a network filesystem [11], to create on-demand storage for
your pods.

Go forth, and Kubernetes
“Kubernetes” (κυβερνήτης) is Greek for pilot—but does that
mean the individual who steers a ship as well as the action of
guiding the ship? Eh, no. “Kubernan” (κυβερνάω) is Greek for
“to pilot” or “to steer,” so go forth and Kubernan, and if you see

 metadata:

 labels:

 app: kube-verify

 spec:

 containers:

 - name: nginx

 image: quay.io/clcollins/kube-verify:01

 ports:

 - containerPort: 8080

EOF

deployment.apps/kube-verify created

Kubernetes will now start creating the deployment, consist-
ing of three pods, each running the quay.io/clcollins/
kube-verify:01 image. After a minute or so, the new pods
should be running, and you can view them with kubectl get
all -n kube-verify to list all the resources created in the
new namespace:

Check the resources that were created by the deployment

$ kubectl get all -n kube-verify

NAME READY STATUS RESTARTS AGE

pod/kube-verify-5f976b5474-25p5r 0/1 Running 0 46s

pod/kube-verify-5f976b5474-sc7zd 1/1 Running 0 46s

pod/kube-verify-5f976b5474-tvl7w 1/1 Running 0 46s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/kube-verify 3/3 3 3 47s

NAME DESIRED CURRENT READY AGE

replicaset.apps/kube-verify-5f976b5474 3 3 3 47s

You can see the new deployment, a replicaset created by the
deployment, and three pods created by the replicaset to fulfill
the replicas: 3 request in the deployment. You can see the
internals of Kubernetes are working.

Now, create a Service to expose the Nginx “application”
(or, in this case, the Welcome page) running in the three
pods. This will act as a single endpoint through which you
can connect to the pods:

Create a service for the deployment

$ cat <<EOF | kubectl create -f -

apiVersion: v1

kind: Service

metadata:

 name: kube-verify

 namespace: kube-verify

spec:

 selector:

 app: kube-verify

 ports:

 - protocol: TCP

 port: 80

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/4/http-kubernetes-skipper
https://opensource.com/article/20/5/nfs-raspberry-pi

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

. BUILD A KUBERNETES CLUSTER WITH THE RASPBERRY PI

me out at a conference or something, give me a pass for trying
to verb a noun. From another language. That I don’t speak.

Disclaimer: As mentioned, I don’t read or speak Greek,
especially the ancient variety, so I’m choosing to believe
something I read on the internet. You know how that goes.
Take it with a grain of salt, and give me a little break since
I didn’t make an “It’s all Greek to me” joke. However, just
mentioning it, I, therefore, was able to make the joke with-
out actually making it, so I’m either sneaky or clever or
both. Or, neither. I didn’t claim it was a good joke.

So, go forth and pilot your containers like a pro with your
own Kubernetes container service in your private cloud at
home! As you become more comfortable, you can modi-
fy your Kubernetes cluster to try different options, like the
aforementioned ingress controllers and dynamic Storage-
Classes for persistent volumes.

This continuous learning is at the heart of DevOps [12],
and the continuous integration and delivery of new services
mirrors the agile methodology, both of which we have em-
braced as we’ve learned to deal with the massive scale en-
abled by the cloud and discovered our traditional practices
were unable to keep pace.

Look at that! Technology, policy, philosophy, a tiny bit of
Greek, and a terrible meta-joke, all in one article!

Links
[1] https://opensource.com/resources/what-is-kubernetes
[2] https://kubernetes.io/docs/concepts/scheduling-eviction/

taint-and-toleration/
[3] https://opensource.com/article/20/5/disk-image-raspberry-pi
[4] https://en.wikipedia.org/wiki/Cgroups
[5] https://en.wikipedia.org/wiki/Classless_Inter-Domain_

Routing
[6] https://github.com/coreos/flannel
[7] https://kubernetes.io/docs/concepts/services-networking/

service/
[8] https://opensource.com/article/20/5/create-simple-cloud-

init-service-your-homelab
[9] https://github.com/clcollins/homelabCloudInit/blob/master/

simpleCloudInitService/data/Containerfile
[10] https://opensource.com/article/20/4/http-kubernetes-

skipper
[11] https://opensource.com/article/20/5/nfs-raspberry-pi
[12] https://opensource.com/tags/devops

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/tags/devops
https://opensource.com/resources/what-is-kubernetes
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://github.com/coreos/flannel
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://opensource.com/article/20/5/create-simple-cloud-init-service-your-homelab
https://opensource.com/article/20/5/create-simple-cloud-init-service-your-homelab
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile
https://opensource.com/article/20/4/http-kubernetes-skipper
https://opensource.com/article/20/4/http-kubernetes-skipper
https://opensource.com/article/20/5/nfs-raspberry-pi
https://opensource.com/tags/devops

16 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW CLOUD-INIT CAN BE USED FOR YOUR RASPBERRY PI HOMELAB .

CLOUD-INIT [1] is a standard—it would not be
a stretch to say it is the standard—

that cloud providers use to provide initialization and con-
figuration data to cloud instances. It is used most often on
the first boot of a new instance to automate network setup,
account creation, and SSH (secure shell) key installation—
anything required to bring a new system online so that it is
accessible by the user.

In a previous article,
Modify a disk image to cre-
ate a Raspberry Pi-based
homelab [2], I showed how
to customize the operat-
ing system image for sin-
gle-board computers like
the Raspberry Pi to accom-
plish a similar goal. With
Cloud-init, there is no need
to add custom data to the
image. Once it is enabled
in your images, your virtual
machines, physical servers, even tiny Raspberry Pis can
behave like cloud instances in your own “private cloud at
home.” New machines can just be plugged in, turned on,
and automatically become part of your homelab [3].

To be honest, Cloud-init is not designed with homelabs
in mind. As I mentioned, you can easily modify the disk
image for a given set of systems to enable SSH access
and configure them after the first boot. Cloud-init is de-
signed for large-scale cloud providers that need to accom-
modate many customers, maintain a small set of images,
and provide a mechanism for those customers to access
instances without customizing an image for each of them.
A homelab with a single administrator does not face the
same challenges.

Cloud-init is not without merit in the homelab, though.
Education is one of my goals for the private cloud at home
project, and setting up Cloud-init for your homelab is a
great way to gain experience with a technology used heav-
ily by cloud providers, large and small. Cloud-init is also an

alternative to other initial-configuration options. Rather than
customizing each image, ISO, etc. for every device in your
homelab and face tedious updates when you want to make
changes, you can just enable Cloud-init. This reduces tech-
nical debt—and is there anything worse than personal tech-
nical debt? Finally, using Cloud-init in your homelab allows
your private cloud instances to behave the same as any

public cloud instances you
have or may have in the fu-
ture—a true hybrid cloud [4].

About Cloud-init
When an instance config-
ured for Cloud-init boots up
and the service (actually,
four services in systemd im-
plementations to handle de-
pendencies during the boot
process) starts, it checks
its configuration for a data-
source to determine what

type of cloud it is running in. Each major cloud provider has
a datasource [5] configuration that tells the instance where
and how to retrieve configuration information. The instance
then uses the datasource information to retrieve configu-
ration information provided by the cloud provider, such as
networking information and instance-identification informa-
tion, and configuration data provided by the customer, such
as authorized keys to be copied, user accounts to be creat-
ed, and many other possible tasks.

After retrieving the data, Cloud-init then configures the in-
stance: setting up networking, copying the authorized keys,
etc., and finally completing the boot process. Then it is ac-
cessible to the remote user, ready for further configuration
with tools like Ansible [6] or Puppet [7] or prepared to receive
a workload and begin its assigned tasks.

Configuration data
As mentioned above, the configuration data used by Cloud-
init comes from two potential sources: the cloud provider and

How Cloud-init can be used
for your Raspberry Pi homelab
Automate adding new devices and users to your homelab
while getting to know a cloud-industry standard.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://opensource.com/article/19/3/home-lab
https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://www.ansible.com/
https://puppet.com/

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

. HOW CLOUD-INIT CAN BE USED FOR YOUR RASPBERRY PI HOMELAB

the instance user. In a homelab, you fill both roles: providing
networking and instance information as the cloud provider
and providing configuration information as the user.

The cloud provider metadata file
In your cloud provider role, your homelab datasource will
offer your private cloud instances a metadata file. The
metadata [8] file contains information such as the instance
ID, cloud type, Python version (Cloud-init is written in and
uses Python), or a public SSH key to be assigned to the
host. The metadata file may also contain networking infor-
mation if you’re not using DHCP (or the other mechanisms
Cloud-init supports, such as a config file in the image or
kernel parameters).

The user-provided user-data file
The real meat of Cloud-init’s value is in the user-data [9]
file. Provided by the user to the cloud provider and includ-
ed in the datasource, the user-data file is what turns an
instance from a generic machine into a member of the us-
er’s fleet. The user-data file can come in the form of an
executable script, working the same as the script would
in normal circumstances, or as a cloud-config YAML file,
which makes use of Cloud-init’s modules [10] to perform
configuration tasks.

Datasource
The datasource is a service provided by the cloud provider
that offers the metadata and user-data files to the instances.
Instance images or ISOs are configured to tell the instance
what datasource is being used.

For example, Amazon AWS provides a link-local [11] file
that will respond to HTTP requests from an instance with
the instance’s custom data. Other cloud providers have their
own mechanisms, as well. Luckily for the private cloud at
home project, there are also NoCloud data sources.

NoCloud [12] datasources allow configuration informa-
tion to be provided via the kernel command as key-val-
ue pairs or as user-data and metadata files provided as
mounted ISO filesystems. These are useful for virtual

machines, especially paired with automation to create the
virtual machines.

There is also a NoCloudNet datasource that behaves
similarly to the AWS EC2 datasource, providing an IP ad-
dress or DNS name from which to retrieve user data and
metadata via HTTP. This is most helpful for the physical ma-
chines in your homelab, such as Raspberry Pis, NUCs [13],
or surplus server equipment. While NoCloud could work, it
requires more manual attention—an anti-pattern for cloud
instances.

Cloud-init for the homelab
I hope this gives you an idea of what Cloud-init is and how it
may be helpful in your homelab. It is an incredible tool that
is embraced by major cloud providers, and using it at home
can be educational and fun and help you automate adding
new physical or virtual servers to your lab. Future articles will
detail how to create both simple static and more complex
dynamic Cloud-init services and guide you in incorporating
them into your private cloud at home.

Links
[1] https://cloudinit.readthedocs.io/
[2] https://opensource.com/article/20/5/disk-image-raspberry-pi
[3] https://opensource.com/article/19/3/home-lab
[4] https://www.redhat.com/en/topics/cloud-computing/what-

is-hybrid-cloud
[5] https://cloudinit.readthedocs.io/en/latest/topics/

datasources.html
[6] https://www.ansible.com/
[7] https://puppet.com/
[8] https://cloudinit.readthedocs.io/en/latest/topics/

instancedata.html#
[9] https://cloudinit.readthedocs.io/en/latest/topics/format.html
[10] https://cloudinit.readthedocs.io/en/latest/topics/modules.

html
[11] https://en.wikipedia.org/wiki/Link-local_address
[12] https://cloudinit.readthedocs.io/en/latest/topics/

datasources/nocloud.html
[13] https://en.wikipedia.org/wiki/Next_Unit_of_Computing

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://cloudinit.readthedocs.io/en/latest/topics/modules.html
https://en.wikipedia.org/wiki/Link-local_address
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://en.wikipedia.org/wiki/Next_Unit_of_Computing
https://cloudinit.readthedocs.io/
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://opensource.com/article/19/3/home-lab
https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud
https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://www.ansible.com/
https://puppet.com/
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://cloudinit.readthedocs.io/en/latest/topics/modules.html
https://cloudinit.readthedocs.io/en/latest/topics/modules.html
https://en.wikipedia.org/wiki/Link-local_address
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://en.wikipedia.org/wiki/Next_Unit_of_Computing

18 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

ADD NODES TO YOUR PRIVATE CLOUD USING CLOUD-INIT .

CLOUD-INIT [1] IS A WIDELY UTILIZED industry-stan-
dard method for initializing cloud

instances. Cloud providers use Cloud-init to customize in-
stances with network configuration, instance information,
and even user-provided configuration directives. It is also a
great tool to use in your “private cloud at home” to add a
little automation to the initial setup and configuration of your
homelab’s virtual and physical machines—and to learn more
about how large cloud providers work. For a bit more detail
and background, see my previous article on Cloud-init and
why it is useful [2].

Boot process for a Linux server running Cloud-init (Chris Collins,
CC BY-SA 4.0)

Admittedly, Cloud-init is more useful for a cloud provider
provisioning machines for many different clients than for
a homelab run by a single sysadmin, and much of what
Cloud-init solves might be a little superfluous for a home-
lab. However, getting it set up and learning how it works is
a great way to learn more about this cloud technology, not
to mention that it’s a great way to configure your devices
on first boot.

This tutorial uses Cloud-init’s “NoCloud” datasource, which
allows Cloud-init to be used outside a traditional cloud pro-
vider setting. This article will show you how to install Cloud-
init on a client device and set up a container running a web

service to respond to the client’s requests. You will also learn
to investigate what the client is requesting from the web ser-
vice and modify the web service’s container to serve a basic,
static Cloud-init service.

Set up Cloud-init on an existing system
Cloud-init probably is most useful on a new system’s first
boot to query for configuration data and make changes to
customize the system as directed. It can be included in a
disk image for Raspberry Pis and single-board comput-
ers [3] or added to images used to provision virtual ma-
chines. For testing, it is easy to install and run Cloud-init
on an existing system or to install a new system and then
set up Cloud-init.

As a major service used by most cloud providers, Cloud-
init is supported on most Linux distributions. For this exam-
ple, I will be using Fedora 31 Server for the Raspberry Pi, but
it can be done the same way on Raspbian, Ubuntu, CentOS,
and most other distributions.

Install and enable the cloud-init services
On a system that you want to be a Cloud-init client, install the
Cloud-init package. If you’re using Fedora:

Install the cloud-init package

dnf install -y cloud-init

Cloud-init is actually four different services (at least with sys-
temd), and each is in charge of retrieving config data and
performing configuration changes during a different part of
the boot process, allowing greater flexibility in what can be
done. While it is unlikely you will interact much with these
services directly, it is useful to know what they are in the
event you need to troubleshoot something. They are:

• cloud-init-local.service
• cloud-init.service
• cloud-config.service
• cloud-final.service

Add nodes to your
private cloud using Cloud-init
Make adding machines to your private cloud at home similar to how the
major cloud providers handle it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/
https://opensource.com/article/20/5/cloud-init-raspberry-pi-homelab
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/20/5/disk-image-raspberry-pi

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

. ADD NODES TO YOUR PRIVATE CLOUD USING CLOUD-INIT

Enable all four services:

Enable the four cloud-init services

systemctl enable cloud-init-local.service

systemctl enable cloud-init.service

systemctl enable cloud-config.service

systemctl enable cloud-final.service

Configure the datasource to query
Once the service is enabled, configure the datasource from
which the client will query the config data. There are a large
number of datasource types [4], and most are configured for
specific cloud providers. For your homelab, use the NoCloud
datasource, which (as mentioned above) is designed for us-
ing Cloud-init without a cloud provider.

NoCloud allows configuration information to be included
a number of ways: as key/value pairs in kernel parameters,
for using a CD (or virtual CD, in the case of virtual machines)
mounted at startup, in a file included on the filesystem, or, as
in this example, via HTTP from a specified URL (the “NoClo-
ud Net” option).

The datasource configuration can be provided via the ker-
nel parameter or by setting it in the Cloud-init configuration
file, /etc/cloud/cloud.cfg. The configuration file works very
well for setting up Cloud-init with customized disk images or
for testing on existing hosts.

Cloud-init will also merge configuration data from any
*.cfg files found in /etc/cloud/cloud.cfg.d/, so to keep
things cleaner, configure the datasource in /etc/cloud/
cloud.cfg.d/10_datasource.cfg. Cloud-init can be told to
read from an HTTP datasource with the seedfrom key by
using the syntax:

seedfrom: http://ip_address:port/

The IP address and port are the web service you will create
later in this article. I used the IP of my laptop and port 8080;
this can also be a DNS name.

Create the /etc/cloud/cloud.cfg.d/10_datasource.cfg file:

Add the datasource:

/etc/cloud/cloud.cfg.d/10_datasource.cfg

NOTE THE TRAILING SLASH HERE!

datasource:

 NoCloud:

 seedfrom: http://ip_address:port/

That’s it for the client setup. Now, when the client is reboot-
ed, it will attempt to retrieve configuration data from the URL
you entered in the seedfrom key and make any configuration
changes that are necessary.

The next step is to set up a webserver to listen for client
requests, so you can figure out what needs to be served.

Set up a webserver to investigate client requests
You can create and run a webserver quickly with Podman [5]
or other container orchestration tools (like Docker or Kuber-
netes). This example uses Podman, but the same commands
work with Docker.

To get started, use the Fedora:31 container image and
create a Containerfile (for Docker, this would be a Dockerfile)
that installs and configures Nginx. From that Containerfile,
you can build a custom image and run it on the host you want
to act as the Cloud-init service.

Create a Containerfile with the following contents:

FROM fedora:31

ENV NGINX_CONF_DIR "/etc/nginx/default.d"

ENV NGINX_LOG_DIR "/var/log/nginx"

ENV NGINX_CONF "/etc/nginx/nginx.conf"

ENV WWW_DIR "/usr/share/nginx/html"

Install Nginx and clear the yum cache

RUN dnf install -y nginx \

 && dnf clean all \

 && rm -rf /var/cache/yum

forward request and error logs to docker log collector

RUN ln -sf /dev/stdout ${NGINX_LOG_DIR}/access.log \

 && ln -sf /dev/stderr ${NGINX_LOG_DIR}/error.log

Listen on port 8080, so root privileges are not required for

podman

RU N sed -i -E 's/(listen)([[:space:]]*)

(\[\:\:\]\:)?80;$/\1\2\38080 default_server;/' $NGINX_CONF

EXPOSE 8080

Allow Nginx PID to be managed by non-root user

RUN sed -i '/user nginx;/d' $NGINX_CONF

RU N sed -i 's/pid \/run\/nginx.pid;/pid

\/tmp\/nginx.pid;/' $NGINX_CONF

Run as an unprivileged user

USER 1001

CMD ["nginx", "-g", "daemon off;"]

Note: The example Containerfile and other files used
in this example can be found in this project’s GitHub
repository [6].

The most important part of the Containerfile above is
the section that changes how the logs are stored (writing
to STDOUT rather than a file), so you can see requests
coming into the server in the container logs. A few oth-
er changes enable you to run the container with Podman
without root privileges and to run processes in the contain-
er without root, as well.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://podman.io/
https://github.com/clcollins/homelabCloudInit/tree/master/simpleCloudInitService/data

20 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

ADD NODES TO YOUR PRIVATE CLOUD USING CLOUD-INIT .

instance itself, such as the instance ID, the hostname to as-
sign the instance, the cloud ID—even networking information.

Create a basic metadata file with an instance ID and a
hostname for the host, and try serving that to the Cloud-init
client.

First, create a metadata file that can be copied into the
container image:

instance-id: iid-local01

local-hostname: raspberry

hostname: raspberry

The instance ID can be anything. However, if you change
the instance ID after Cloud-init runs and the file is served to
the client, it will trigger Cloud-init to run again. You can use
this mechanism to update instance configurations, but you
should be aware that it works that way.

The local-hostname and hostname keys are just that;
they set the hostname information for the client when
Cloud-init runs.

Add the following line to the Containerfile to copy the
metadata file into the new image:

Copy the meta-data file into the image for Nginx to serve it

COPY meta-data ${WWW_DIR}/meta-data

Now, rebuild the image (use a new tag for easy troubleshoot-
ing) with the metadata file, and create and run a new con-
tainer with Podman:

Build a new image named cloud-init:02

podman build -f Containerfile -t cloud-init:02 .

Run a new container with this new meta-data file

podman run --rm -p 8080:8080 -it cloud-init:02

With the new container running, reboot your Cloud-init client
and watch the Nginx logs again:

12 7.0.0.1 - - [09/May/2020:22:54:32 +0000] "GET

/meta-data HTTP/1.1" 200 63 "-" "Cloud-Init/17.1" "-"

20 20/05/09 22:54:32 [error] 2#0: *2 open()

"/usr/share/nginx/html/user-data" failed (2: No such file or

directory), client: 127.0.0.1, server: _, request:

"GET /user-data HTTP/1.1", host: "instance-data:8080"

12 7.0.0.1 - - [09/May/2020:22:54:32 +0000]

"GET /user-data HTTP/1.1" 404 3650 "-" "Cloud-Init/17.1" "-"

You see that this time the /meta-data path was served to the
client. Success!

However, the client is looking for a second file at the /us-
er-data path. This file contains configuration data provided
by the instance owner, as opposed to data from the cloud
provider. For a homelab, both of these are you.

This first pass at the webserver does not serve any
Cloud-init data; just use this to see what the Cloud-init cli-
ent is requesting from it.

With the Containerfile created, use Podman to build and
run a webserver image:

Build the container image

$ podman build -f Containerfile -t cloud-init:01 .

Create a container from the new image, and run it

It will listen on port 8080

$ podman run --rm -p 8080:8080 -it cloud-init:01

This will run the container, leaving your terminal attached
and with a pseudo-TTY. It will appear that nothing is hap-
pening at first, but requests to port 8080 of the host ma-
chine will be routed to the Nginx server inside the contain-
er, and a log message will appear in the terminal window.
This can be tested with a curl command from the host
machine:

Use curl to send an HTTP request to the Nginx container

$ curl http://localhost:8080

After running that curl command, you should see a log mes-
sage similar to this in the terminal window:

12 7.0.0.1 - - [09/May/2020:19:25:10 +0000] "GET / HTTP/1.1"

200 5564 "-" "curl/7.66.0" "-"

Now comes the fun part: reboot the Cloud-init client and
watch the Nginx logs to see what Cloud-init requests from
the webserver when the client boots up.

As the client finishes its boot process, you should see log
messages similar to:

20 20/05/09 22:44:28 [error] 2#0: *4 open()

"/usr/share/nginx/html/meta-data" failed (2: No such file or

directory), client: 127.0.0.1, server: _, request:

"GET /meta-data HTTP/1.1", host: "instance-data:8080"

12 7.0.0.1 - - [09/May/2020:22:44:28 +0000] "GET /meta-data

HTTP/1.1" 404 3650 "-" "Cloud-Init/17.1" "-"

Note: Use Ctrl+C to stop the running container.
You can see the request is for the /meta-data path, i.e.,

http://ip_address_of_the_webserver:8080/meta-data.
This is just a GET request—Cloud-init is not POSTing (send-
ing) any data to the webserver. It is just blindly requesting the
files from the datasource URL, so it is up to the datasource to
identify what the host is asking. This simple example is just
sending generic data to any client, but a larger homelab will
need a more sophisticated service.

Here, Cloud-init is requesting the instance metadata [7] in-
formation. This file can include a lot of information about the

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#what-is-instance-data

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

. ADD NODES TO YOUR PRIVATE CLOUD USING CLOUD-INIT

There are a large number of user-data modules [8] you
can use to configure your instance. For this example, just
use the write_files module to create some test files on the
client and verify that Cloud-init is working.

Create a user-data file with the following content:

#cloud-config

Create two files with example content using the write_files module

write_files:

 - content: |

 "Does cloud-init work?"

 owner: root:root

 permissions: '0644'

 path: /srv/foo

 - content: |

 "IT SURE DOES!"

 owner: root:root

 permissions: '0644'

 path: /srv/bar

In addition to a YAML file using the user-data modules pro-
vided by Cloud-init, you could also make this an executable
script for Cloud-init to run.

After creating the user-data file, add the following line to
the Containerfile to copy it into the image when the image is
rebuilt:

Copy the user-data file into the container image

COPY user-data ${WWW_DIR}/user-data

Rebuild the image and create and run a new container, this
time with the user-data information:

Build a new image named cloud-init:03

podman build -f Containerfile -t cloud-init:03 .

Run a new container with this new user-data file

podman run --rm -p 8080:8080 -it cloud-init:03

Now, reboot your Cloud-init client, and watch the Nginx logs
on the webserver:

12 7.0.0.1 - - [09/May/2020:23:01:51 +0000]

"GET /meta-data HTTP/1.1" 200 63 "-" "Cloud-Init/17.1" "-"

12 7.0.0.1 - - [09/May/2020:23:01:51 +0000]

"GET /user-data HTTP/1.1" 200 298 "-" "Cloud-Init/17.1" "-

Success! This time both the metadata and user-data files
were served to the Cloud-init client.

Validate that Cloud-init ran
From the logs above, you know that Cloud-init ran on the client
host and requested the metadata and user-data files, but did it
do anything with them? You can validate that Cloud-init wrote
the files you added in the user-data file, in the write_files section.

On your Cloud-init client, check the contents of the /srv/foo
and /srv/bar files:

cd /srv/ && ls

bar foo

cat foo

"Does cloud-init work?"

cat bar

"IT SURE DOES!"

Success! The files were written and have the content you
expect.

As mentioned above, there are plenty of other modules that
can be used to configure the host. For example, the user-data
file can be configured to add packages with apt, copy SSH
authorized_keys, create users and groups, configure and run
configuration-management tools, and many other things. I use
it in my private cloud at home to copy my authorized_keys,
create a local user and group, and set up sudo permissions.

What you can do next
Cloud-init is useful in a homelab, especially a lab focusing on
cloud technologies. The simple service demonstrated in this
article may not be super useful for a homelab, but now that
you know how Cloud-init works, you can move on to creating
a dynamic service that can configure each host with custom
data, making a private cloud at home more similar to the
services provided by the major cloud providers.

With a slightly more complicated datasource, adding new
physical (or virtual) machines to your private cloud at home
can be as simple as plugging them in and turning them on.

Links
[1] https://cloudinit.readthedocs.io/
[2] https://opensource.com/article/20/5/cloud-init-raspberry-pi-

homelab
[3] https://opensource.com/article/20/5/disk-image-raspberry-pi
[4] https://cloudinit.readthedocs.io/en/latest/topics/

datasources.html
[5] https://podman.io/
[6] https://github.com/clcollins/homelabCloudInit/tree/master/

simpleCloudInitService/data
[7] https://cloudinit.readthedocs.io/en/latest/topics/

instancedata.html#what-is-instance-data
[8] https://cloudinit.readthedocs.io/en/latest/topics/modules.html

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://cloudinit.readthedocs.io/en/latest/topics/modules.html
https://cloudinit.readthedocs.io/
https://opensource.com/article/20/5/cloud-init-raspberry-pi-homelab
https://opensource.com/article/20/5/cloud-init-raspberry-pi-homelab
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources.html
https://podman.io/
https://github.com/clcollins/homelabCloudInit/tree/master/simpleCloudInitService/data
https://github.com/clcollins/homelabCloudInit/tree/master/simpleCloudInitService/data
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#what-is-instance-data
https://cloudinit.readthedocs.io/en/latest/topics/instancedata.html#what-is-instance-data
https://cloudinit.readthedocs.io/en/latest/topics/modules.html

22 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

TURN YOUR RASPBERRY PI HOMELAB INTO A NETWORK FILESYSTEM .

A SHARED FILESYSTEM is a great
way to add

versatility and functionality to a homelab. Having a central-
ized filesystem shared to the clients in the lab makes or-
ganizing data, doing backups, and sharing data consider-
ably easier. This is especially useful for web applications
load-balanced across multiple servers and for persistent vol-
umes used by Kubernetes [1], as it allows pods to be spun
up with persistent data on any number of nodes.

Whether your homelab is made up of ordinary computers,
surplus enterprise servers, or Raspberry Pis or other sin-
gle-board computers (SBCs), a shared filesystem is a useful
asset, and a network filesystem (NFS) server is a great way
to create one.

I have written before about setting up a “private cloud
at home,” [2] a homelab made up of Raspberry Pis or oth-
er SBCs and maybe some other consumer hardware or a
desktop PC. An NFS server is an ideal way of sharing data
between these components. Since most SBCs’ operating
systems (OSes) run off an SD card, there are some chal-
lenges. SD cards suffer from increased failures, especially
when used as the OS disk for a computer, and they are not
made to be constantly read from and written to. What you re-
ally need is a real hard drive: they are generally cheaper per
gigabyte than SD cards, especially for larger disks, and they
are less likely to sustain failures. Raspberry Pi 4’s now come

with USB 3.0 ports, and USB 3.0 hard drives are ubiquitous
and affordable. It’s a perfect match. For this project, I will use
a 2TB USB 3.0 external hard drive plugged into a Raspberry
Pi 4 running an NFS server.

Install the NFS server software
I am running Fedora Server on a Raspberry Pi, but this proj-
ect can be done with other distributions as well. To run an
NFS server on Fedora, you need the nfs-utils package, and
luckily it is already installed (at least in Fedora 31). You also
need the rpcbind package if you are planning to run NFSv3
services, but it is not strictly required for NFSv4.

If these packages are not already on your system, install
them with the dnf command:

Intall nfs-utils and rpcbind

$ sudo dnf install nfs-utils rpcbind

Raspbian is another popular OS used with Raspberry Pis,
and the setup is almost exactly the same. The package
names differ, but that is about the only major difference. To
install an NFS server on a system running Raspbian, you
need the following packages:

• nfs-common: These files are common to NFS servers
and clients

• nfs-kernel-server: The main NFS server software package

Raspbian uses apt-get for package management (not dnf,
as Fedora does), so use that to install the packages:

For a Raspbian system, use apt-get to install the NFS

packages

$ sudo apt-get install nfs-common nfs-kernel-server

Prepare a USB hard drive as storage
As I mentioned above, a USB hard drive is a good choice
for providing storage for Raspberry Pis or other SBCs, es-
pecially because the SD card used for the OS disk image is
not ideal. For your private cloud at home, you can use cheap
USB 3.0 hard drives for large-scale storage. Plug the disk in
and use fdisk to find out the device ID assigned to it, so you
can work with it.

Turn your Raspberry Pi homelab
into a network filesystem
Add shared filesystems to your homelab with an NFS server.

(Chris Collins, CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://creativecommons.org/licenses/by-sa/4.0/

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 23

. TURN YOUR RASPBERRY PI HOMELAB INTO A NETWORK FILESYSTEM

Find your disk using fdisk

Unrelated disk content omitted

$ sudo fdisk -l

Disk /dev/sda: 1.84 TiB, 2000398933504 bytes, 3907029167 sectors

Disk model: BUP Slim BK

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xe3345ae9

Device Boot Start End Sectors Size Id Type

/dev/sda1 2048 3907028991 3907026944 1.8T 83 Linux

For clarity, in the example output above, I omitted all the
disks except the one I’m interested in. You can see the USB
disk I want to use was assigned the device /dev/sda, and
you can see some information about the model (Disk mod-
el: BUP Slim BK), which helps me identify the correct disk.
The disk already has a partition, and its size confirms it is the
disk I am looking for.

Note: Make sure to identify the correct disk and parti-
tion for your device. It may be different than the example
above.

Each partition created on a drive gets a special universal-
ly unique identifier (UUID). The computer uses the UUID to
make sure it is mounting the correct partition to the correct
location using the /etc/fstab config file. You can retrieve the
UUID of the partition using the blkid command:

Get the block device attributes for the partition

Make sure to use the partition that applies in your case. It

may differ.

$ sudo blkid /dev/sda1

/dev/sda1: LABEL="backup" UUID="bd44867c-447c-4f85-8dbf-

dc6b9bc65c91" TYPE="xfs" PARTUUID="e3345ae9-01"

In this case, the UUID of /dev/sda1 is bd44867c-447c-
4f85-8dbf-dc6b9bc65c91. Yours will be different, so make
a note of it.

Configure the Raspberry Pi to mount this disk on
startup, then mount it
Now that you have identified the disk and partition you want
to use, you need to tell the computer how to mount it, to do
so whenever it boots up, and to go ahead and mount it now.
Because this is a USB disk and might be unplugged, you will
also configure the Raspberry Pi to not wait on boot if the disk
is not plugged in or is otherwise unavailable.

In Linux, this is done by adding the partition to the /etc/
fstab configuration file, including where you want it to be
mounted and some arguments to tell the computer how to

treat it. This example will mount the partition to /srv/nfs, so
start by creating that path:

Create the mountpoint for the disk partition

$ sudo mkdir -p /srv/nfs

Next, modify the /etc/fstab file using the following syntax
format:

<disk id> <mountpoint> <filesystem type> <options> <fs_freq> <fs_passno>

Use the UUID you identified earlier for the disk ID. As I men-
tioned in the prior step, the mountpoint is /srv/nfs. For the
filesystem type, it is usually best to select the actual filesys-
tem, but since this will be a USB disk, use auto.

For the options values, use nosuid,nodev,nofail.

An aside about man pages:
That said, there are a lot of possible options, and the manual
(man) pages are the best way to see what they are. Inves-
tigating the man page for for fstab is a good place to start:

Open the man page for fstab

$ man fstab

This opens the manual/documentation associated with the
fstab command. In the man page, each of the options is bro-
ken down to show what it does and the common selections.
For example, The fourth field (fs_mntopts) gives some
basic information about the options that work in that field
and directs you to man (8) mount for more in-depth descrip-
tion of the mount options. That makes sense, as the /etc/
fstab file, in essence, tells the computer how to automate
mounting disks, in the same way you would manually use
the mount command.

You can get more information about the options you will
use from mount’s man page. The numeral 8, in parentheses,
indicates the man page section. In this case, section 8 is for
System Administration tools and Daemons.

Helpfully, you can get a list of the standard sections from
the man page for man.

Back to mountng the disk, take a look at man (8) mount:

Open Section 8 of the man pages for mount

$ man (8) mount

In this man page, you can examine what the options listed
above do:

• nosuid: Do not honor the suid/guid bit. Do not allow any
files that might be on the USB disk to be executed as
root. This is a good security practice.

• nodev: Do not interpret characters or block special devic-
es on the file system; i.e., do not honor any device nodes

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

24 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

TURN YOUR RASPBERRY PI HOMELAB INTO A NETWORK FILESYSTEM .

In the case of an NFS server, rpcbind maps the protocol
number for NFS to the port on which the NFS server is lis-
tening. However, NFSv4 does not require the use of rpcbind.
If you use only NFSv4 (by removing versions two and three
from the configuration), rpcbind is not required. I’ve included
it here for backward compatibility with NFSv3.

Export the mounted filesystem
The NFS server decides which filesystems are shared with
(exported to) which remote clients based on another config-
uration file, /etc/exports. This file is just a map of host inter-
net protocol (IP) addresses (or subnets) to the filesystems to
be shared and some options (read-only or read-write, root
squash, etc.). The format of the file is:

<directory> <host or hosts>(options)

In this example, you will export the partition mounted to /srv/
nfs. This is the “directory” piece.

The second part, the host or hosts, includes the hosts you
want to export this partition to. These can be specified as a
single host with a fully qualified domain name or hostname,
the IP address of the host, a number of hosts using wildcard
characters to match domains (e.g., *.example.org), IP net-
works (e.g., classless inter-domain routing, or CIDR, nota-
tion), or netgroups.

The third piece includes options to apply to the export:

• ro/rw: Export the filesystem as read only or read write
• wdelay: Delay writes to the disk if another write is im-

minent to improve performance (this is probably not as
useful with a solid-state USB disk, if that is what you are
using)

• root_squash: Prevent any root users on the client from
having root access on the host, and set the root UID to
nfsnobody as a security precaution

Test exporting the partition you have mouted at /srv/nfs to a
single client—for example, a laptop. Identify your client’s IP
address (my laptop’s is 192.168.2.64, but yours will likely be
different). You could share it to a large subnet, but for testing,
limit it to the single IP address. The CIDR notation for just
this IP is 192.168.2.64/32; a /32 subnet is just a single IP.

Using your preferred editor, edit the /etc/exports file with your
directory, host CIDR, and the rw and root_squash options:

Edit your /etc/exports file like so, substituting the

information from your systems

/srv/nfs 192.168.2.64/32(rw,root_squash)

Note: If you copied the /etc/exports file from another loca-
tion or otherwise overwrote the original with a copy, you may
need to restore the SELinux context for the file. You can do
this with the restorecon command:

that might be on the USB disk. Another good security
practice.

• nofail: Do not log any errors if the device does not exist.
This is a USB disk and might not be plugged in, so it will
be ignored if that is the case.

Returning to the line you are adding to the /etc/fstab file, there
are two final options: fs_freq and fs_passno. Their values are
related to somewhat legacy options, and most modern systems
just use a 0 for both, especially for filesystems on USB disks.
The fs_freq value relates to the dump command and making
dumps of the filesystem. The fs_passno value defines which
filesystems to fsck on boot and their order. If it’s set, usually the
root partition would be 1 and any other filesystems would be 2.
Set the value to 0 to skip using fsck on this partition.

In your preferred editor, open the /etc/fstab file and add
the entry for the partition on the USB disk, replacing the val-
ues here with those gathered in the previous steps.

With sudo, or as root, add the partition info to the /etc/

fstab file

UUID= "bd44867c-447c-4f85-8dbf-dc6b9bc65c91" /srv/nfs

auto nosuid,nodev,nofail,noatime 0 0

Enable and start the NFS server
With the packages installed and the partition added to your /
etc/fstab file, you can now go ahead and start the NFS serv-
er. On a Fedora system, you need to enable and start two
services: rpcbind and nfs-server. Use the systemctl com-
mand to accomplish this:

Start NFS server and rpcbind

$ sudo systemctl enable rpcbind.service

$ sudo systemctl enable nfs-server.service

$ sudo systemctl start rpcbind.service

$ sudo systemctl start nfs-server.service

On Raspbian or other Debian-based distributions, you just
need to enable and start the nfs-kernel-server service us-
ing the systemctl command the same way as above.

RPCBind
The rpcbind utility is used to map remote procedure call
(RPC) services to ports on which they listen. According to
the rpcbind man page:

“When an RPC service is started, it tells rpcbind
the address at which it is listening, and the
RPC program numbers it is prepared to serve.
When a client wishes to make an RPC call
to a given program number, it first contacts
rpcbind on the server machine to determine the
address where RPC requests should be sent.”

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 25

. TURN YOUR RASPBERRY PI HOMELAB INTO A NETWORK FILESYSTEM

Restore the SELinux context of the /etc/exports file

$ sudo restorecon /etc/exports

Once this is done, restart the NFS server to pick up the
changes to the /etc/exports file:

Restart the nfs server

$ sudo systemctl restart nfs-server.service

Open the firewall for the NFS service
Some systems, by default, do not run a firewall service [3].
Raspbian, for example, defaults to open iptables rules, with
ports opened by different services immediately available
from outside the machine. Fedora server, by contrast, runs
the firewalld service by default, so you must open the port
for the NFS server (and rpcbind, if you will be using NFSv3).
You can do this with the firewall-cmd command.

Check the zones used by firewalld and get the default
zone. For Fedora Server, this will be the FedoraServer zone:

List the zones

Output omitted for brevity

$ sudo firewall-cmd --list-all-zones

Retrieve just the default zone info

Make a note of the default zone

$ sudo firewall-cmd --get-default-zone

Permanently add the nfs service to the list of allowed ports

$ sudo firewall-cmd --add-service=nfs --permanent

For NFSv3, we need to add a few more ports, nfsv3,

rpc-mountd, rpc-bind

$ sudo firewall-cmd --add-service=(nfs3,mountd,rpc-bind)

Check the services for the zone, substituting the default

zone in use by your system

$ sudo firewall-cmd --list-services --zone=FedoraServer

If all looks good, reload firewalld

$ sudo firewall-cmd --reload

And with that, you have successfully configured the NFS
server with your mounted USB disk partition and exported it
to your test system for sharing. Now you can test mounting it
on the system you added to the exports list.

Test the NFS exports
First, from the NFS server, create a file to read in the /srv/
nfs directory:

Create a test file to share

echo "Can you see this?" >> /srv/nfs/nfs_test

Now, on the client system you added to the exports list, first
make sure the NFS client packages are installed. On Fedora
systems, this is the nfs-utils package and can be installed
with dnf. Raspbian systems have the libnfs-utils package
that can be installed with apt-get.

Install the NFS client packages:

Install the nfs-utils package with dnf

$ sudo dnf install nfs-utils

Once the client package is installed, you can test out the
NFS export. Again on the client, use the mount command
with the IP of the NFS server and the path to the export,
and mount it to a location on the client, which for this test is
the /mnt directory. In this example, my NFS server’s IP is
192.168.2.109, but yours will likely be different:

Mount the export from the NFS server to the client host

Make sure to substitute the information for your own hosts

$ sudo mount 192.168.2.109:/srv/nfs /mnt

See if the nfs_test file is visible:

$ cat /mnt/nfs_test

Can you see this?

Success! You now have a working NFS server for your home-
lab, ready to share files with multiple hosts, allow multi-read/
write access, and provide centralized storage and backups
for your data. There are many options for shared storage for
homelabs, but NFS is venerable, efficient, and a great option
to add to your “private cloud at home” homelab. Future arti-
cles in this series will expand on how to automatically mount
NFS shares on clients and how to use NFS as a storage
class for Kubernetes Persistent Volumes.

Links
[1] https://opensource.com/resources/what-is-kubernetes
[2] https://opensource.com/article/20/5/disk-image-raspberry-pi
[3] https://opensource.com/article/18/9/linux-iptables-firewalld

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/9/linux-iptables-firewalld
https://opensource.com/resources/what-is-kubernetes
https://opensource.com/article/20/5/disk-image-raspberry-pi
https://opensource.com/article/18/9/linux-iptables-firewalld

26 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

PROVISION KUBERNETES NFS CLIENTS ON A RASPBERRY PI HOMELAB .

EPHEMERAL CONTAINERS are useful, but some-
times data needs to persist be-

tween containers or be shared among multiple containers.
The solution is mounting external volumes inside the con-
tainers, and this is done in Kubernetes with persistent vol-
umes. In large, public cloud deployments, Kubernetes has
integrations with the cloud providers’ block-storage back-
ends, allowing developers to create claims for volumes to
use with their deployments, and Kubernetes works with the
cloud provider to create a volume and mount it in the devel-
opers’ pods.

You can replicate this same behavior in a “private cloud
at home” Kubernetes cluster using the network filesystem
(NFS)-client provisioner from the Kubernetes Incubator [1]
external storage project.

Chris Collins, CC BY-SA 4.0

In a previous article, I explained how to set up an NFS serv-
er with a Raspberry Pi [2]. You can use this NFS server to
back the storage provided by the NFS-client provisioner.
The provisioner runs a container that mounts an NFS export
from your NFS server and carves it up into “volumes” when a
persistent volume claim is created, requesting volumes for a

pod. Kubernetes supports NFS volume types natively [3] and
handles mounting the volumes inside the containers when a
pod starts.

The NFS-client provisioner gives the benefit of dynam-
ically provisioned volumes and makes a homelab cluster
behave similarly to a Kubernetes cluster in the cloud. In
addition, because these are NFS volumes, they can sup-
port multi-read/multi-write operations, so multiple pods can
have the volumes mounted at the same time. This is useful
for load-balanced services like a webserver, where multiple
pods can be spread across multiple nodes to handle traffic
and provide greater availability. NFS volumes can also be
created that support only read/write-once operations. This
is better for database or other instances, where the soft-
ware writing to the volume does not handle multiple write
operations nicely.

Persistent volumes, persistent volume claims,
and storage classes
Persistent volumes [4] are volumes backed by non-ephem-
eral storage that can be mounted as a volume inside a con-
tainer. Data written into that volume persists across contain-
er restarts and can be mounted into new pods when they
replace old ones. In the case of NFS volumes, the volumes
can be mounted into multiple containers at the same time,
allowing the data to be shared.

Developers can request a persistent volume from Kuber-
netes with a persistent volume claim (PVC) [5]. This is ex-
actly what it sounds like: a request for a volume that matches
certain conditions, such as access mode or size, and that
can be claimed and used for a project. Persistent volumes
request specific volume types using storage classes.

Storage classes [6] describe types of volumes that can
be claimed, allowing developers to choose volume types that
will work best with what they need. Administrators can create
multiple types of storage classes to meet specific needs, like
access mode or size (as mentioned above) or even speed/
IOPS classes or different backend technologies. Storage
classes can also specify a particular provisioner or software
in charge of creating and managing the volumes.

Provision Kubernetes NFS clients
on a Raspberry Pi homelab
Create dynamic persistent volumes on a Raspberry Pi Kubernetes cluster with the NFS-client
provisioner.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/kubernetes-incubator/external-storage
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/20/5/nfs-raspberry-pi
https://github.com/kubernetes-incubator/external-storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 27

. PROVISION KUBERNETES NFS CLIENTS ON A RASPBERRY PI HOMELAB

Cluster administrators can maintain a large pool of
pre-provisioned volumes created manually to satisfy the
storage classes, but that requires hands-on work and does
not scale well. With a dynamic volume provisioner, software
can handle the creation of volumes on-demand when a new
claim is created. By default, the NFS-client provisioner has
a single storage class, and PVCs that request volumes from
this storage class are fulfilled by the provisioner.

The NFS-client provisioner
The NFS-client provisioner [7] is part of the Kubernetes Incu-
bator project. In a Kubernetes cluster, this provisioner runs
in a container that mounts an NFS export from an existing
NFS server—it does not run an NFS server itself. With the
container, it listens for PVCs that match its storage class,
creates directories within the NFS export, and reports each
directory to Kubernetes as a persistent volume. Kubernetes
can then mount the volume into a container that uses the
volumes from that PVC.

Installation of the NFS-client provisioner can be done with
a Helm chart, as described in the project’s README [8],
but both for educational reasons and because this tutorial
is about running a Kubernetes cluster on Raspberry Pis and
needs a few adjustments, you will install it manually on a
private-cloud-at-home cluster.

Prerequisites
There are two prerequisites before you can use the NFS-cli-
ent provisioner:
1. Find the details of the NFS server (the IP address and

path to the export)
2. Install the NFS libraries on each of the Kubernetes nodes

that might run pods that need the NFS volumes
If you installed your own NFS server, such as the one in

Turn your Raspberry Pi homelab into a network filesystem [9],
you should already know the server’s IP address and the
path to its exported filesystem. Make sure the export list in-
cludes all the Kubernetes nodes that might run pods with the
NFS volumes.

You also need to install the NFS libraries on each of these
nodes, so they will be able to mount the NFS volumes. On
Ubuntu, Raspbian, or other Debian-based operating sys-
tems, you can install the nfs-common package using apt. For
Red Hat-based distributions, install the nfs-utils package.

With the prerequisites out of the way, you can move on
to installing the NFS-client provisioner onto the Kubernetes
cluster.

Installation
The NFS-client provisioner is deployed using standard
Kubernetes objects. You can find these in the Kubernetes
Incubator external storage project within the nfs-client
directory. To get started, clone the https://github.com/ku-
bernetes-incubator/external-storage repository:

Clone the external-storage repo

(output omitted)

$ git clone https://github.com/kubernetes-incubator/external-

storage.git

The specific pieces needed to install the NFS-client provi-
sioner are in nfs-client/deploy:

$ cd external-storage/nfs-client/deploy

$ ls

class.yaml deployment.yaml rbac.yaml test-pod.yaml

deployment-arm.yaml objects test-claim.yaml

Note that the objects directory contains everything from its
parent directory, just broken out to a single file per object.

Before doing anything else, you must create the appropri-
ate role-based access control (RBAC) permissions to allow
the NFS-client provisioner service account to mount vol-
umes, create PVCs, etc. They can be created on the cluster
with the kubectl create command.

If you plan to deploy the provisioner in a namespace oth-
er than the default namespace, make sure to change the
namespace in the RBAC and deployment files first:

Create the RBAC permissions needed by the provisioner

kubectl create -f rbac.yaml

serviceaccount/nfs-client-provisioner created

cl usterrole.rbac.authorization.k8s.io/nfs-client-provisioner-

runner created

cl usterrolebinding.rbac.authorization.k8s.io/run-nfs-client-

provisioner created

ro le.rbac.authorization.k8s.io/leader-locking-nfs-client-

provisioner created

ro lebinding.rbac.authorization.k8s.io/leader-locking-nfs-

client-provisioner created

Next, create a deployment for the NFS-client provisioner
pod. If you created your Kubernetes cluster by following the
Build a Kubernetes cluster with the Raspberry Pi [10] instruc-
tions or you created your own on an ARM-based system, you
will need to modify and deploy using the deployment-arm.
yaml file. If you are using an x86_64-based system, use the
deployment.yaml file.

Edit the file with your editor of choice. You need to change
four things. First, set the three environment variables from
the .spec.template.containers.env list:
• Change the value for PROVISIONER_NAME to nfs-storage

(optional; this just makes it a little more human-friendly).
• Change the NFS_SERVER value to the IP address of your

NFS server.
• Change the NFS_PATH value to the path of your NFS export.
Finally, under .spec.template.spec.volumes.nfs, change
the server and path values to the same ones you set for the
NFS_SERVER and NFS_PATH, respectively.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client#with-helm
https://opensource.com/article/20/5/nfs-raspberry-pi
https://opensource.com/article/20/5/kubernetes-raspberry-pi

28 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

PROVISION KUBERNETES NFS CLIENTS ON A RASPBERRY PI HOMELAB .

If everything worked correctly, the NFS-client provisioner is
now running in your cluster. If the pod has the status Con-
tainerCreating, and it does not eventually change to Run-
ning, check for any relevant events using the kubectl get
events command. Make sure that the user “nobody” has
write permissions on the export directory on the NFS server.
If there are no issues, move on to creating the storage class.

The class.yaml file needs to be modified to set the pro-
visioner value to nfs-storage or whatever you set for
the PROVISIONER_NAME value in the deployment-arm.yaml.
This tells Kubernetes which provisioner needs to be used
to fulfill PVCs for this storage class. Assuming you choose
nfs-storage, the class.yaml file should look like this:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: managed-nfs-storage

provisioner: nfs-storage # or choose another name, must match

deployment's env PROVISIONER_NAME'

parameters:

 archiveOnDelete: "false"

Create the storage class with the kubectl create command:

Create the storage class

$ kubectl create -f class.yaml

storageclass.storage.k8s.io/managed-nfs-storage created

Verify the storage class was created

$ kubectl get storageClass

NAME PROVISIONER RECLAIMPOLICY \

 VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

managed-nfs-storage nfs-storage Delete Immediate false

Success! The NFS-client provisioner is now installed in the
Kubernetes cluster and prepared to dynamically allocate
persistent storage volumes for your pods in response to
persistent volumes claims against the managed-nfs-storage
storage class.

Test your new volume provisioner
With the provisioner installed and configured, you can test it
out by creating a PVC that requests a persistent volume and
a pod to mount the volume. Luckily, test objects are provided
with the files used for the deployment: test-claim.yaml and
test-pod.yaml.

Before creating a PVC and a pod, take a look at what is
already there. Unless you have already created some, there
should not be any persistent volumes nor PVCs:

Look for existing persistent volumes

$ kubectl get persistentvolumes

No resources found in default namespace.

For example, in an NFS server and export path of
192.168.2.123:/srv, the deployment-arm.yaml file would
look like this:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nfs-client-provisioner

 labels:

 app: nfs-client-provisioner

 namespace: default

spec:

 replicas: 1

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app: nfs-client-provisioner

 template:

 metadata:

 labels:

 app: nfs-client-provisioner

 spec:

 serviceAccountName: nfs-client-provisioner

 containers:

 - name: nfs-client-provisioner

 image: quay.io/external_storage/nfs-client-

provisioner-arm:latest

 volumeMounts:

 - name: nfs-client-root

 mountPath: /persistentvolumes

 env:

 - name: PROVISIONER_NAME

 value: nfs-storage

 - name: NFS_SERVER

 value: 192.168.2.123

 - name: NFS_PATH

 value: /srv

 volumes:

 - name: nfs-client-root

 nfs:

 server: 192.168.2.123

 path: /srv

Once the deployment-arm.yaml file has been modified, cre-
ate the deployment with the kubectl create command:

Create the deployment

$ kubectl create -f deployment-arm.yaml

deployment.apps/nfs-client-provisioner created

Check that the deployment created the provisioner pod correctly

$ kubectl get po

NAME READY STATUS RESTARTS AGE

nfs-client-provisioner-6ddfb9bb6d-x4zwt 1/1 Running 0 54s

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 29

. PROVISION KUBERNETES NFS CLIENTS ON A RASPBERRY PI HOMELAB

Look for existing persistent volume claims

$ kubectl get persistentvolumeclaims

No resources found in default namespace.

Now, create a new PVC from the test-claim.yaml file:

Create a test PVC

$ kubectl create -f test-claim.yaml

persistentvolumeclaim/test-claim created

$ kubectl get persistentvolumeclaims

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

test-claim Bound pvc-bdf41489-abe4-4508-8adc-74e80f70c626 \

 1Mi RWX managed-nfs-storage 7s

From the output above, you can see a PVC named test-claim
was created and bound. This claim is tied to a volume named
pvc-bdf41489-abe4-4508-8adc-74e80f70c626 that was cre-
ated automatically by the NFS-client provisioner. Also, note
the STORAGECLASS is called managed-nfs-storage—the name
of the storage class you created.

Do not worry about the CAPACITY value. The NFS-client
provisioner does not have a way to enforce storage quota;
NFS does not have that feature. The 1Mi is a placeholder.

Now that the PVC and its associated persistent volume
have been created by the NFS-client provisioner, log into
your NFS server and check out what happened on that end:

From the NFS host, with the directory used for the NFS export

$ ls -la

total 4

drwxr-xr-x 3 nobody root 73 May 25 18:46 .

drwxr-xr-x 21 root root 4096 May 25 17:37 ..

dr wxrwxrwx 2 nobody nogroup 6 May 25 18:45 default-test-

claim-pvc-bdf41489-abe4-4508-8adc-74e80f70c626

A new directory has been created that follows the naming
convention namespace-pvc_name-pv_name. This directory is
initially empty. You can create a test pod to mount this direc-
tory via NFS and write to it.

First, if your cluster is using Raspberry Pis or other ARM-
based hosts, the test-pod.yaml file needs to be modified to
use a busybox image created for ARM hosts. The default will
pull from the gcr.io registry but does not have the correct ar-
chitecture for the sh binary, resulting in “exec format” errors.
If your Kubernetes cluster is running on x86_64 hosts, you
can skip this step.

Change the test-pod.yaml file to use the docker.io/
aarch64/busybox:latest container image. Your file should
look like this:

kind: Pod

apiVersion: v1

metadata:

 name: test-pod

spec:

 containers:

 - name: test-pod

 image: docker.io/aarch64/busybox:latest

 # image: gcr.io/google_containers/busybox:1.24

 command:

 - "/bin/sh"

 args:

 - "-c"

 - "touch /mnt/SUCCESS && exit 0 || exit 1"

 volumeMounts:

 - name: nfs-pvc

 mountPath: "/mnt"

 restartPolicy: "Never"

 volumes:

 - name: nfs-pvc

 persistentVolumeClaim:

 claimName: test-claim

The pod described in the file will create a busybox container,
mount the NFS volume from the test-claim persistent volume
to /mnt inside the container, and create a file named SUCCESS.

Creae the test pod container

$ kubectl create -f test-pod.yaml

pod/test-pod created

Validate the container ran without problem

$ kubectl get po

NAME READY STATUS RESTARTS AGE

nfs-client-provisioner-6ddfb9bb6d-x4zwt 1/1 Running 0 20m

test-pod 0/1 Completed 0 65s

If the container ran correctly and the status is Completed,
then check the contents of the volume on your NFS server:

From the NFS server, within the directory for the PVC

$ ls default-test-claim-pvc-bdf41489-abe4-4508-8adc-74e80f70c626/

SUCCESS

Success indeed! The pod was able to mount the NFS vol-
ume created by the NFS-client provisioner and write to it!

Clean up the test pod and PVC with the kubectl delete
command:

Cleanup the test-pod pod

$ kubectl delete po test-pod

pod "test-pod" deleted

Cleanup the test-claim pvc

$ kubectl delete pvc test-claim

persistentvolumeclaim "test-claim" deleted

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

30 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

PROVISION KUBERNETES NFS CLIENTS ON A RASPBERRY PI HOMELAB .

Take your new NFS-client provisioner out for a spin, and
create some projects that need persistent storage. Per-
haps try (shameless plug incoming) deploying InfluxDB and
Grafana on Kubernetes to collect Twitter stats [11].

Links
[1] https://github.com/kubernetes-incubator/external-storage
[2] https://opensource.com/article/20/5/nfs-raspberry-pi
[3] https://github.com/kubernetes-incubator/external-storage
[4] https://kubernetes.io/docs/concepts/storage/persistent-

volumes/
[5] https://kubernetes.io/docs/concepts/storage/persistent-

volumes/#persistentvolumeclaims
[6] https://kubernetes.io/docs/concepts/storage/storage-

classes/
[7] https://github.com/kubernetes-incubator/external-storage/

tree/master/nfs-client
[8] https://github.com/kubernetes-incubator/external-storage/

tree/master/nfs-client#with-helm
[9] https://opensource.com/article/20/5/nfs-raspberry-pi
[10] https://opensource.com/article/20/5/kubernetes-raspberry-pi
[11] https://opensource.com/article/19/2/deploy-influxdb-

grafana-kubernetes

Turn up the volume(s)
Thanks to the NFS-client provisioner and your NFS server,
you can now request persistent volumes to use with your
pods by creating PVCs, and the claims will be automatically
filled with dynamically provisioned NFS volumes. This mir-
rors, in most aspects, how Kubernetes works with dynamic
provisioners in large public clouds and allows you to use a
workflow like one you would use with a public cloud provider.
In fact, a benefit of storage classes is the abstraction created
between the PVCs and the volume providers. This allows
you to use storage classes with the same name and different
providers between on-premises private clouds and any of
the public cloud providers, making it easier to “lift-and-shift”
workloads between them.

By using NFS, you can support multi-read and multi-write
operations on the volumes, too, allowing multiple pods to
use the volumes at the same time. As mentioned, this is
great for load-balanced web servers or similar services and
allows you to scale your services across multiple nodes at
the same time.

Best of all, the NFS-client provisioner is automatic, dy-
namically creating volumes within the NFS export so that
they do not have to be manually provisioned ahead of time!

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/2/deploy-influxdb-grafana-kubernetes
https://github.com/kubernetes-incubator/external-storage
https://opensource.com/article/20/5/nfs-raspberry-pi
https://github.com/kubernetes-incubator/external-storage
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client#with-helm
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client#with-helm
https://opensource.com/article/20/5/nfs-raspberry-pi
https://opensource.com/article/20/5/kubernetes-raspberry-pi
https://opensource.com/article/19/2/deploy-influxdb-grafana-kubernetes
https://opensource.com/article/19/2/deploy-influxdb-grafana-kubernetes

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 31

. USE THIS SCRIPT TO FIND A RASPBERRY PI ON YOUR NETWORK

WE’VE ALL BEEN THERE. “I’m going to get this Rasp-
berry Pi [1] to try out. They look kinda

cool.” And then, like tribbles on an Enterprise, suddenly you
have Kubernetes clusters [2] and NFS servers [3] and Tor
proxies [4]. Maybe even a hotel booking system! [5]

Pis cover the desk. They spill out onto the floor. Carrier
boards for Raspberry Pi compute modules installed into
lunchboxes litter the shelves.

…or maybe that’s just me?
I’ll bet if you have one Raspberry Pi, you’ve got at least

two others, though, and gosh darn it, they all look the
same.

This was the situation I found myself in recently while test-
ing a network filesystem (NFS) server I set up on one of my
Raspberry Pis. I needed to plug in a USB hard drive, but …
to which one? Ol’ Lingonberry Pi was the chosen host, and I
was SSH’d into her, but which actual, physical RPi was she?
There was no way of knowing…

Or was there?

So, so many Raspberry Pis. Which one is Lingonberry?
Chris Collins, CC BY-SA 4.0

At a previous job, I sometimes worked on servers in our
data centers, and some of them had a neat feature: an ID
button on the front of the server that, when pressed, start-

ed an LED flashing on the front and back of the server. If
I needed to deal with the other side of the server, I could
press the ID button, then walk allllll the way around to the
other side of the rack, and easily find the right server.

I needed something like this to find Lingonberry.
There aren’t any buttons on the Pis, but there are LEDs,

and after a quick Google search, I learned that one of them
is controllable [6]. Cue maniacal laughter.

There are three important bits to know. First, the LED path:
on Raspberry Pis, at least those running Ubuntu 20.04, the
front (and user-controllable) LED is found at /sys/class/
leds/led0. If you navigate to it, you’ll find it is a symlink to a
directory that has a number of files in it. The two important
files are trigger and brightness.

The trigger file controls what lights up the LED. If you cat
that file, you will find a list:

no ne usb-gadget usb-host rc-feedback rfkill-any rfkill-none

kbd-scrolllock kbd-numlock kbd-capslock kbd-kanalock

kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock

kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock

timer oneshot disk-activity disk-read disk-write ide-disk

mtd nand-disk heartbeat backlight gpio cpu cpu0 cpu1 cpu2

cpu3 default-on input panic mmc1 [mmc0] bluetooth-power

rfkill0 unimac-mdio--19:01:link unimac-mdio--19:01:1Gbps

unimac-mdio--19:01:100Mbps unimac-mdio--19:01:10Mbps

The item in brackets indicates what triggers the LED; in
the example above, it’s [mmc0]—the disk activity for when
the SD card plugged into the Raspberry Pi. The trigger file
isn’t a normal file, though. Rather than editing it directly,
you change the trigger by echoing one of the triggers into
the file.

To identify Lingonberry, I needed to temporarily disable the
[mmc0] trigger, so I could make the LED work how I wanted
it to work. In the script, I disabled all the triggers by echoing
“none” into the trigger file:

You must be root to do this

$ echo none >trigger

Use this script to find a
Raspberry Pi on your network
Identify a specific Raspberry Pi in your cluster with a script that triggers an LED to flash.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/raspberry-pi
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://opensource.com/article/20/5/nfs-raspberry-pi
https://opensource.com/article/20/4/tor-proxy-raspberry-pi
https://opensource.com/article/20/4/qloapps-raspberry-pi
https://creativecommons.org/licenses/by-sa/4.0/
https://www.raspberrypi.org/forums/viewtopic.php?t=12530

32 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

USE THIS SCRIPT TO FIND A RASPBERRY PI ON YOUR NETWORK .

 echo "Could not find an LED at ${LED}"

 echo "Perhaps try '/sys/class/leds/ACT'?"

 exit 1

fi

function quit() {

 echo mmc0 >"${LED}/trigger"

}

echo -n "Blinking Raspberry Pi's LED - press CTRL-C to quit"

echo none >"${LED}/trigger"

while true

do

 let "COUNT=COUNT+1"

 if [[$COUNT -lt 30]]

 then

 echo 1 >"${LED}/brightness"

 sleep 1

 echo 0 >"${LED}/brightness"

 sleep 1

 else

 quit

 break

 fi

done

This script checks that the LED control directory exists,
disables the [mmc0] trigger, and then starts a loop blinking
the LED on and off every second. It also includes a trap to
catch INT and TERM signals and resets the trigger. I copied
this script onto all my Raspberry Pis, and any time I need to
identify one of them, I just run it. It worked perfectly to identify
Ol’ Lingonberry, so I could set up the disks for the NFS serv-
er, and I’ve used it a number of times since then.

One thing to note—the path to the LED might be differ-
ent in other distributions. There are also other LEDs in the
/sys/class/leds directory, but they are not controllable by
the user; they are hooked into different bits of the firmware
of the Raspberry Pi.

Links
[1] https://opensource.com/resources/raspberry-pi
[2] https://opensource.com/article/20/6/kubernetes-raspberry-pi
[3] https://opensource.com/article/20/5/nfs-raspberry-pi
[4] https://opensource.com/article/20/4/tor-proxy-raspberry-pi
[5] https://opensource.com/article/20/4/qloapps-raspberry-pi
[6] https://www.raspberrypi.org/forums/viewtopic.php?t=12530
[7] https://tldp.org/LDP/Bash-Beginners-Guide/html/

sect_12_02.html
[8] https://opensource.org/licenses/MIT

$ cat trigger

[n one] usb-gadget usb-host rc-feedback rfkill-any rfkill-

none kbd-scrolllock kbd-numlock kbd-capslock kbd-kanalock

kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock kbd-

shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock timer

oneshot disk-activity disk-read disk-write ide-disk mtd

nand-disk heartbeat backlight gpio cpu cpu0 cpu1 cpu2 cpu3

default-on input panic mmc1 mmc0 bluetooth-power rfkill0

unimac-mdio--19:01:link unimac-mdio--19:01:1Gbps

unimac-mdio--19:01:100Mbps unimac-mdio--19:01:10Mbps

In the contents of the trigger file above, you can see [none]
is now the selected trigger. Now the LED is off and not
flashing.

Next up is the brightness file. You can control whether
the LED is on (1) or off (0) by echoing either 0 or 1 into
the file. Alternating 1 and 0 will make the LED blink, and
doing it with a one-second sleep in the middle produces
a regular on/off blink unlike any of the activity that would
otherwise trigger the LED. This is perfect for identifying
the Raspberry Pi.

Finally, if you do not set the trigger file back to a trigger, it
remains off. That’s not what you want most of the time—it’s
better to see the disk activity. This means you have to make
sure that any script you write will reset the trigger when it’s
finished or interrupted. That calls for a signal trap [7]. A trap
will capture the SIGINT or SIGTERM (or other) signals and ex-
ecute some code before quitting. This way, if the script is
interrupted—say if you press CTRL+C to stop it—it can still
reset the trigger.

With this newfound knowledge, I was able to bang out a
script (available under the MIT License [8]) pretty quickly and
toss it onto my Raspberry Pis:

#!/bin/sh

set -o errexit

set -o nounset

trap quit INT TERM

COUNT=0

if ! [$(id -u) = 0]; then

 echo "Must be run as root."

 exit 1

fi

LED="/sys/class/leds/led0"

if [[! -d $LED]]

then

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/raspberry-pi
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://opensource.com/article/20/5/nfs-raspberry-pi
https://opensource.com/article/20/4/tor-proxy-raspberry-pi
https://opensource.com/article/20/4/qloapps-raspberry-pi
https://www.raspberrypi.org/forums/viewtopic.php?t=12530
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html
https://opensource.org/licenses/MIT
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_12_02.html
https://opensource.org/licenses/MIT

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 33

. MANAGE YOUR KUBERNETES CLUSTER WITH LENS

AS MORE WORKLOADS are migrat-
ed to con-

tainerized environments, it becomes challenging to manage
those larger numbers of containers and the connections be-
tween them and other systems. As the scale and complexity
of a containerized environment increase past a human’s abil-
ity to manage, container orchestration platforms such as Ku-
bernetes [1] become increasingly important. Such platforms,
however, come with their own management challenges that
require metrics, observability, and a user-friendly interface to
present their huge amount of complexity.

Enter Lens
Lens [2], which bills itself as “the Kubernetes IDE,” is a use-
ful, attractive, open source user interface (UI) for working
with Kubernetes clusters. Out of the box, Lens can connect
to Kubernetes clusters using your kubeconfig file and will
display information about the cluster and the objects it con-
tains. Lens can also connect to—or install—a Prometheus
stack and use it to provide metrics about the cluster, includ-
ing node information and health.

An overview of workloads on the cluster. (Chris Collins,
CC BY-SA 4.0)

Like Kubernetes’ dashboard and OpenShift, Lens provides
live updates on the state of objects in the cluster and metrics
collected by Prometheus [3].

Get started
Installing Lens is straightforward. AppImage [4] packages
are available for Linux, and there are binaries available for
macOS and Windows clients. This tutorial explains how to
download and use the Lens AppImage to install and use
Lens on Linux.

According to AppImage’s FAQ [5], an AppImage is “a
downloadable file for Linux that contains an application
and everything the application needs to run.” An application
packaged as an AppImage is just that—a single executable
file that can be downloaded and run.

The AppImage for Lens can be downloaded from the Lens
Releases [6] page on GitHub. After you download it, mark
the file executable with chmod, and then either execute it
directly or copy it to a place in your $PATH:

Download the 3.4.0 AppImage for Lens, mark it executable and

copy it to your $PATH

(output omitted for brevity)

$ wget https://github.com/lensapp/lens/releases/download/

v3.4.0/Lens-3.4.0.AppImage

$ chmod +x Lens-3.4.0.AppImage

$ sudo mv Lens-3.4.0.AppImage /usr/sbin/lens

Then you can start Lens by typing lens on the command
line.

Connect Lens to a Kubernetes cluster
Once you launch Lens, connect it to a Kubernetes cluster by
clicking the + icon in the top-left corner and selecting a ku-
beconfig. Next, a drop-down box will appear containing any
Kubernetes contexts from your ~/.kube/config file, or you
can select a custom one. Because cluster and authentication
information about the cluster for any context is included in
the kubeconfig file, Lens treats each context as a different
cluster, unfortunately.

This is particularly unhelpful compared with how Open-
Shift creates context information in the kubeconfig file au-
tomatically for any project (namespace) you switch to. As
a site-reliability engineer (SRE) working on hundreds of

Manage your Kubernetes cluster
with Lens
Lens is a useful, attractive, open source user interface for working with Kubernetes clusters.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://k8slens.dev/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/sitewide-search?search_api_views_fulltext=prometheus
https://opensource.com/article/20/6/appimages
https://docs.appimage.org/user-guide/faq.html#question-what-is-an-appimage
https://github.com/lensapp/lens/releases/latest

34 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

MANAGE YOUR KUBERNETES CLUSTER WITH LENS .

to the cluster and install the kube-state-metrics [8] service to
gather information about the cluster.

To install it, just right-click on the cluster icon in the top-
left corner of the Lens UI (after connecting to the cluster, of
course) and select Settings. Under Features on the Set-
tings page, you will find a Metrics section and a button to
install Prometheus. Click Install to deploy the Prometheus
stack to your cluster, and Lens will auto-detect its existence
and begin displaying metrics. (It will take a minute—the new
Prometheus has to collect some metrics first.)

I also appreciate that Lens links directly to the manifests
used to deploy this stack, so you can verify what will be cre-
ated before doing it, if you want.

Hardware utilization metrics about the cluster. (Chris Collins,
CC BY-SA 4.0)

Fix kube-state-metrics
Unfortunately, while Prometheus will install just fine on a
Raspberry Pi-based cluster, the kube-state-metrics service
will fail. Currently, the kube-state-metrics project does not
build an AArch64/ARM64 image, so pods created from that
image will continuously crash with exec format error mes-
sages in the logs.

Luckily this issue is being tracked [9], and the kube-state-
metrics project is working toward building the infrastructure
to produce official ARM images. Until then, however, you
can use a community-developed image and patch the kube-
state-metrics deployment directly using Lens.

Go back into the cluster information, click on Workloads,
and select Deployments. A list of all the Kubernetes deploy-
ment objects in the cluster will appear in the pane on the
right. You should be able to pick out the kube-state-metrics
deployment easily by the angry red entry under the Condi-
tions column that indicates the crash-looping pod issue.

Select the kube-state-metrics deployment, and details of
the object slide out from the right in an overlay window. In the
upper-right corner of this window is a pencil icon. Click that
icon to open an editor window with the YAML representation
of the kube-state-metrics deployment. Scroll down, and edit
the .spec.template.spec.containers.image value. By de-

clusters, I had dozens and dozens of “clusters” to choose
from when setting up Lens. In practice, I found it best to se-
lect the default context for any cluster. You can manage all
namespaces and workloads once Lens has connected, and
there’s no need to add them all.

Once it’s connected, Lens will display a ton of informa-
tion about your cluster. You can see the workloads that are
running: pods and deployments, daemon sets, cron jobs,
etc. You can also view information about config maps and
secrets, networking information, storage, namespaces,
and events. Each will let you drill down into the information
about a given object, and you can even edit the objects
directly in Lens.

Details of pods running on the cluster. (Chris Collins,
CC BY-SA 4.0)

Gather metrics about your cluster
One of Lens’ incredibly helpful features is its ability to con-
nect to a Prometheus stack installed in your cluster to gather
metrics about the cluster and its nodes for both current and
historical data. This is great for getting at-a-glance informa-
tion about the cluster right within the Lens UI without having
to go to an external dashboard. However, the information
presented is not comprehensive–it’s good for an overview,
but you may still wish to utilize a visualization tool such as
Grafana with a more complicated dashboard to gather more
specialized information.

Along with being able to connect to an existing Pro-
metheus stack provisioned in the cluster, Lens can install
applications on your behalf, too. This is very useful for
enthusiasts running Kubernetes clusters in their home-
labs to be able to deploy and connect to Prometheus in
a single click.

Install Prometheus with Lens
If you have been following along with this series, especially
Build a Kubernetes cluster with the Raspberry Pi [7], you will
have a Kubernetes cluster provisioned in your homelab for
education and tinkering. One thing the vanilla cluster lacks
is metrics, and this is a great opportunity to add Prometheus

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/kubernetes/kube-state-metrics
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/kubernetes/kube-state-metrics/issues/1037
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/20/6/kubernetes-raspberry-pi

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 35

. MANAGE YOUR KUBERNETES CLUSTER WITH LENS

fault, this value points to the official image: quay.io/coreos/
kube-state-metrics:v1.9.5. Replace this value with docker.
io/carlosedp/kube-state-metrics:v1.9.5.

In that same deployment are nodeAffinity rules, one of
which forces the deployment to only run pods on hosts with
amd64 architecture. This won’t work for an AArch64/ARM64
Raspberry Pi, and with the updated image above, it’s not
useful. Find the key beta.kubernetes.io/arch in .spec.tem-
plate.spec.affinity.nodeAffinity.requiredDuringSched-
ulingIgnoredDuringExecution.nodeSelectorTerms:

 - key: beta.kubernetes.io/arch

 operator: In

 values:

 - amd64

Delete this key entirely, and that will allow the pods from the
deployment to be scheduled on your Raspbery Pi nodes. Click
Save. This will trigger the deployment to roll out new kube-
state-metrics pods with an ARM64 architecture, and they
should become ready and begin reporting the metrics directly
to Prometheus.

Lens lets you see clearly
Kubernetes is complex, and any tool that makes it easier
to visualize and work with Kubernetes clusters can lower

the barrier of entry for new folks and make life considerably
easier for experienced Kubernetes administrators. Lens
knocks this out of the park with an attractive, intuitive, and
easy-to-use UI for managing one or more clusters, from the
10,000-foot view down into the nitty-gritty of individual Ku-
bernetes objects. Lens also helps display metrics about the
cluster and makes installing and using a Prometheus stack
to display the metrics almost push-button.

I am extremely impressed with Lens and use it to manage
several Kubernetes clusters in my own homelab, and I hope
you find it useful as well.

Links
[1] https://opensource.com/resources/what-is-kubernetes
[2] https://k8slens.dev/
[3] https://opensource.com/sitewide-search?search_api_

views_fulltext=prometheus
[4] https://opensource.com/article/20/6/appimages
[5] https://docs.appimage.org/user-guide/faq.html#question-

what-is-an-appimage
[6] https://github.com/lensapp/lens/releases/latest
[7] https://opensource.com/article/20/6/kubernetes-raspberry-pi
[8] https://github.com/kubernetes/kube-state-metrics
[9] https://github.com/kubernetes/kube-state-metrics/

issues/1037

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://k8slens.dev/
https://opensource.com/sitewide-search?search_api_views_fulltext=prometheus
https://opensource.com/sitewide-search?search_api_views_fulltext=prometheus
https://opensource.com/article/20/6/appimages
https://docs.appimage.org/user-guide/faq.html#question-what-is-an-appimage
https://docs.appimage.org/user-guide/faq.html#question-what-is-an-appimage
https://github.com/lensapp/lens/releases/latest
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics/issues/1037
https://github.com/kubernetes/kube-state-metrics/issues/1037

36 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

KUBERNETES IS DESIGNED to integrate with ma-
jor cloud providers’ load bal-

ancers to provide public IP addresses and direct traffic
into a cluster. Some professional network equipment man-
ufacturers also offer controllers to integrate their physical
load-balancing products into Kubernetes installations in
private data centers. For an enthusiast running a Kuber-
netes cluster at home, however, neither of these solutions
is very helpful.

Kubernetes does not have a built-in network load-balanc-
er implementation. A bare-metal cluster, such as a Kuber-
netes cluster installed on Raspberry Pis for a private-cloud
homelab [1], or really any cluster deployed outside a public
cloud and lacking expensive professional hardware, needs
another solution. MetalLB [2] fulfills this niche, both for en-
thusiasts and large-scale deployments.

MetalLB is a network load balancer and can expose cluster
services on a dedicated IP address on the network, allowing
external clients to connect to services inside the Kubernetes
cluster. It does this via either layer 2 (data link) [3] using Ad-
dress Resolution Protocol (ARP) [4] or layer 4 (transport) [5]
using Border Gateway Protocol (BGP) [6].

While Kubernetes does have something called Ingress [7],
which allows HTTP and HTTPS traffic to be exposed out-
side the cluster, it supports only HTTP or HTTPS traffic,
while MetalLB can support any network traffic. It is more
of an apples-to-oranges comparison, however, because
MetalLB provides resolution of an unassigned IP address
to a particular cluster node and assigns that IP to a Ser-
vice, while Ingress uses a specific IP address and internal-
ly routes HTTP or HTTPS traffic to a Service or Services
based on routing rules.

MetalLB can be set up in just a few steps, works espe-
cially well in private homelab clusters, and within Kuberne-
tes clusters, it behaves the same as public cloud load-bal-
ancer integrations. This is great for education purposes
(i.e., learning how the technology works) and makes it

easier to “lift-and-shift” workloads between on-premises
and cloud environments.

ARP vs. BGP
As mentioned, MetalLB works via either ARP or BGP to re-
solve IP addresses to specific hosts. In simplified terms, this
means when a client attempts to connect to a specific IP, it
will ask “which host has this IP?” and the response will point
it to the correct host (i.e., the host’s MAC address).

With ARP, the request is broadcast to the entire network,
and a host that knows which MAC address has that IP ad-
dress responds to the request; in this case, MetalLB’s an-
swer directs the client to the correct node.

With BGP, each “peer” maintains a table of routing in-
formation directing clients to the host handling a particular
IP for IPs and the hosts the peer knows about, and it ad-
vertises this information to its peers. When configured for
BGP, MetalLB peers each of the nodes in the cluster with
the network’s router, allowing the router to direct clients to
the correct host.

In both instances, once the traffic has arrived at a host, Ku-
bernetes takes over directing the traffic to the correct pods.

For the following exercise, you’ll use ARP. Consum-
er-grade routers don’t (at least easily) support BGP, and
even higher-end consumer or professional routers that do
support BGP can be difficult to set up. ARP, especially in
a small home network, can be just as useful and requires
no configuration on the network to work. It is considerably
easier to implement.

Install MetalLB
Installing MetalLB is straightforward. Download or copy two
manifests from MetalLB’s GitHub repository [8] and apply
them to Kubernetes. These two manifests create the name-
space MetalLB’s components will be deployed to and the
components themselves: the MetalLB controller, a “speaker”
daemonset, and service accounts.

Install a Kubernetes load balancer
on your Raspberry Pi homelab
with MetalLB
Assign real IPs from your home network to services running in your
cluster and access them from other hosts on your network.

INSTALL A KUBERNETES LOAD BALANCER ON YOUR RASPBERRY PI HOMELAB WITH METALLB

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://metallb.universe.tf/
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/metallb/metallb

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 37

Install the components
Once you create the components, a random secret is gener-
ated to allow encrypted communication between the speak-
ers (i.e., the components that “speak” the protocol to make
services reachable).

(Note: These steps are also available on MetalLB’s
website.)

The two manifests with the required MetalLB compo-
nents are:
• https://raw.githubusercontent.com/metallb/metallb/v0.9.3/

manifests/namespace.yaml
• https://raw.githubusercontent.com/metallb/metallb/v0.9.3/

manifests/metallb.yaml
They can be downloaded and applied to the Kubernetes
cluster using the kubectl apply command, either locally or
directly from the web:

Verify the contents of the files, then download and pipe then

to kubectl with curl

(output omitted)

$ kubectl apply -f https://raw.githubusercontent.com/metallb/

metallb/v0.9.3/manifests/namespace.yaml

$ kubectl apply -f https://raw.githubusercontent.com/metallb/

metallb/v0.9.3/manifests/metallb.yaml

After applying the manifests, create a random Kubernetes
secret for the speakers to use for encrypted communications:

Create a secret for encrypted speaker communications

$ kubectl create secret generic -n metallb-system memberlist

--from-literal=secretkey="$(openssl rand -base64 128)"

Completing the steps above will create and start all the
MetalLB components, but they will not do anything until they
are configured. To configure MetalLB, create a configMap that
describes the pool of IP addresses the load balancer will use.

Configure the address pools
MetalLB needs one last bit of setup: a configMap with details
of the addresses it can assign to the Kubernetes Service
LoadBalancers. However, there is a small consideration.
The addresses in use do not need to be bound to specific
hosts in the network, but they must be free for MetalLB to
use and not be assigned to other hosts.

In my home network, IP addresses are assigned by
the DHCP server my router is running. This DHCP server
should not attempt to assign the addresses that MetalLB
will use. Most consumer routers allow you to decide how
large your subnet will be and can be configured to assign
only a subset of IPs in that subnet to hosts via DHCP.

In my network, I am using the subnet 192.168.2.1/24,
and I decided to give half the IPs to MetalLB. The first half
of the subnet consists of IP addresses from 192.168.2.1
to 192.168.2.126. This range can be represented by a /25

subnet: 192.168.2.1/25. The second half of the subnet can
similarly be represented by a /25 subnet: 192.168.2.128/25.
Each half contains 126 IPs—more than enough for the hosts
and Kubernetes services. Make sure to decide on subnets
appropriate to your own network and configure your router
and MetalLB appropriately.

After configuring the router to ignore addresses in the
192.168.2.128/25 subnet (or whatever subnet you are us-
ing), create a configMap to tell MetalLB to use that pool of
addresses:

Create the config map

$ cat <<EOF | kubectl create -f -

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: metallb-system

 name: config

data:

 config: |

 address-pools:

 - name: address-pool-1

 protocol: layer2

 addresses:

 - 192.168.2.128/25

EOF

The example configMap above uses CIDR [9] notation, but
the list of addresses can also be specified as a range:

addresses:

 - 192.168.2.128-192.168.2.254

Once the configMap is created, MetalLB will be active. Time
to try it out!

Test MetalLB
You can test the new MetalLB configuration by creating an
example web service, and you can use one from a previ-
ous article [10] in this series: Kube Verify. Use the same
image to test that MetalLB is working as expected: quay.
io/clcollins/kube-verify:01. This image contains an
Nginx server listening for requests on port 8080. You can
view the Containerfile [11] used to create the image. If
you want, you can instead build your own container image
from the Containerfile and use that for testing.

If you previously created a Kubernetes cluster on Rasp-
berry Pis, you may already have a Kube Verify service run-
ning and can skip to the section [12] on creating a LoadBal-
ancer-type of service.

If you need to create a kube-verify namespace
If you do not already have a kube-verify namespace, create
one with the kubectl command:

. INSTALL A KUBERNETES LOAD BALANCER ON YOUR RASPBERRY PI HOMELAB WITH METALLB

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://raw.githubusercontent.com/metallb/metallb/v0.9.3/manifests/namespace.yaml
https://raw.githubusercontent.com/metallb/metallb/v0.9.3/manifests/namespace.yaml
https://raw.githubusercontent.com/metallb/metallb/v0.9.3/manifests/metallb.yaml
https://raw.githubusercontent.com/metallb/metallb/v0.9.3/manifests/metallb.yaml
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile
https://opensource.com/article/20/7/homelab-metallb#loadbalancer

38 RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM

spec:

 selector:

 app: kube-verify

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

 type: LoadBalancer

EOF

You could accomplish the same thing with the kubectl expose
command:

ku bectl expose deployment kube-verify -n kube-verify

--type=LoadBalancer --target-port=8080 --port=80

MetalLB is listening for services of type LoadBalancer and
immediately assigns an external IP (an IP chosen from the
range you selected when you set up MetalLB). View the new
service and the external IP address MetalLB assigned to it
with the kubectl get service command:

View the new kube-verify service

$ kubectl get service kube-verify -n kube-verify

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kube-verify LoadBalancer 10.105.28.147 192.168.2.129 80:31491/TCP 4m14s

Look at the details of the kube-verify service

$ kubectl describe service kube-verify -n kube-verify

Name: kube-verify

Namespace: kube-verify

Labels: app=kube-verify

Annotations: <none>

Selector: app=kube-verify

Type: LoadBalancer

IP: 10.105.28.147

LoadBalancer Ingress: 192.168.2.129

Port: <unset> 80/TCP

TargetPort: 8080/TCP

NodePort: <unset> 31491/TCP

Endpoints: 10.244.1.50:8080,10.244.1.51:8080,10.244.2.36:8080

Session Affinity: None

External Traffic Policy: Cluster

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal IPAllocated 5m55s metallb-controller Assigned IP

"192.168.2.129"

 Normal nodeAssigned 5m55s metallb-speaker announcing from node

"gooseberry"

In the output from the kubectl describe command, note
the events at the bottom, where MetalLB has assigned an
IP address (yours will vary) and is “announcing” the assign-

Create a new namespace

$ kubectl create namespace kube-verify

List the namespaces

$ kubectl get namespaces

NAME STATUS AGE

default Active 63m

kube-node-lease Active 63m

kube-public Active 63m

kube-system Active 63m

metallb-system Active 21m

kube-verify Active 19s

With the namespace created, create a deployment in that
namespace:

Create a new deployment

$ cat <<EOF | kubectl create -f -

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kube-verify

 namespace: kube-verify

 labels:

 app: kube-verify

spec:

 replicas: 3

 selector:

 matchLabels:

 app: kube-verify

 template:

 metadata:

 labels:

 app: kube-verify

 spec:

 containers:

 - name: nginx

 image: quay.io/clcollins/kube-verify:01

 ports:

 - containerPort: 8080

EOF

deployment.apps/kube-verify created

Create a LoadBalancer-type Kubernetes service
Now expose the deployment by creating a LoadBalanc-
er-type Kubernetes service. If you already have a service
named kube-verify, this will replace that one:

Create a LoadBalancer service for the kube-verify deployment

cat <<EOF | kubectl apply -f -

apiVersion: v1

kind: Service

metadata:

 name: kube-verify

 namespace: kube-verify

INSTALL A KUBERNETES LOAD BALANCER ON YOUR RASPBERRY PI HOMELAB WITH METALLB

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

RUNNING KUBERNETES ON YOUR RASPBERRY PI HOMELAB ... CC BY-SA 4.0 ... OPENSOURCE.COM 39

ment from one of the nodes in your cluster (again, yours will
vary). It also describes the port, the external port you can
access the service from (80), the target port inside the con-
tainer (port 8080), and a node port through which the traffic
will route (31491). The end result is that the Nginx server
running in the pods of the kube-verify service is accessi-
ble from the load-balanced IP, on port 80, from anywhere on
your home network.

For example, on my network, the service was exposed on
http://192.168.2.129:80, and I can curl that IP from my
laptop on the same network:

Verify that you receive a response from Nginx on the load-balanced IP

$ curl 192.168.2.129

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

 <title>Test Page for the HTTP Server on Fedora</title>

(further output omitted)

MetalLB FTW
MetalLB is a great load balancer for a home Kubernetes
cluster. It allows you to assign real IPs from your home net-
work to services running in your cluster and access them
from other hosts on your home network. These services

can even be exposed outside the network by port-forward-
ing traffic through your home router (but please be careful
with this!). MetalLB easily replicates cloud-provider-like
behavior at home on bare-metal computers, Raspberry
Pi-based clusters, and even virtual machines, making it
easy to “lift-and-shift” workloads to the cloud or just famil-
iarize yourself with how they work. Best of all, MetalLB is
easy and convenient and makes accessing the services
running in your cluster a breeze.

Links
[1] https://opensource.com/article/20/6/kubernetes-raspberry-pi
[2] https://metallb.universe.tf/
[3] https://en.wikipedia.org/wiki/Data_link_layer
[4] https://en.wikipedia.org/wiki/Address_Resolution_Protocol
[5] https://en.wikipedia.org/wiki/Transport_layer
[6] https://en.wikipedia.org/wiki/Border_Gateway_Protocol
[7] https://kubernetes.io/docs/concepts/services-networking/

ingress/
[8] https://github.com/metallb/metallb
[9] https://en.wikipedia.org/wiki/Classless_Inter-Domain_

Routing
[10] https://opensource.com/article/20/6/kubernetes-raspberry-pi
[11] https://github.com/clcollins/homelabCloudInit/blob/master/

simpleCloudInitService/data/Containerfile
[12] https://opensource.com/article/20/7/homelab-

metallb#loadbalancer

. INSTALL A KUBERNETES LOAD BALANCER ON YOUR RASPBERRY PI HOMELAB WITH METALLB

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://metallb.universe.tf/
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/metallb/metallb
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://opensource.com/article/20/6/kubernetes-raspberry-pi
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile
https://github.com/clcollins/homelabCloudInit/blob/master/simpleCloudInitService/data/Containerfile
https://opensource.com/article/20/7/homelab-metallb#loadbalancer
https://opensource.com/article/20/7/homelab-metallb#loadbalancer

