
Getting started
with DevSecOps

The open source guide to DevOps security

Opensource.com

https://opensource.com/

OPENSOURCE.COM .

2	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

Chat with us in Freenode IRC: #opensource.com

ABOUT OPENSOURCE.COM

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.Opensource.com
http://www.Opensource.com
https://www.Opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal
https://freenode.net/#opensource.com
http://www.Opensource.com

. OPENSOURCE.COM

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 3

INTRODUCTION

CHAPTERS

GET INVOLVED | ADDITIONAL RESOURCES

Get involved | Additional Resources	 14
Write for Us | Keep in Touch 	 15

Talking to normal people about security 	 6
Who will push back the most on a move to DevOps?	 8
3 security tips for software developers	 10
5 ways DevSecOps changes security	 12

What is DevSecOps? 	 4

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

INTRODUCTION . . .

4	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

DEVSECOPS as a practice or an art form is an
evolution on the concept of DevOps.

To better understand DevSecOps, you should first have an un-
derstanding of what DevOps means.

DevOps was born from merging the practices of develop-
ment and operations, removing the silos, aligning the focus,
and improving efficiency and performance of both the teams
and the product. A new syner-
gy was formed, with DevOps
focused on building products
and services that are easy to
maintain and that automate
typical operations functions.

Security is a common silo
in many organizations. Se-
curity’s core focus is pro-
tecting the organization, and
sometimes this means cre-
ating barriers or policies that
slow down the execution of
new services or products to ensure that everything is well
understood and done safely and that nothing introduces
unnecessary risk to the organization.

Because of the distinct nature of the security silo and the fric-
tion it can introduce, development and operations sometimes

bypass or work around security to meet their objectives. At
some firms, the silo creates an expectation that security is
entirely the responsibility of the security team and it is up to
them to figure out what security defects or issues may be
introduced as a result of a product.

DevSecOps looks at merging the security discipline within
DevOps. By enhancing or building security into the de-

veloper and/or operational
role, or including a secu-
rity role within the product
engineering team, security
naturally finds itself in the
product by design.

This allows companies to
release new products and
updates more quickly and
with full confidence that se-
curity is embedded into the
product.

Where does rugged software fit into DevSecOps?
Building rugged software is more an aspect of the DevOps
culture than a distinct practice, and it complements and en-
hances a DevSecOps practice. Think of a rugged product
as something that has been battle-hardened through experi-
mentation or experience.

It’s important to note that rugged software is not necessar-
ily 100% secure (although it may have been at some point in
time). However, it has been designed to handle most of what
is thrown at it.

The key tenets of a rugged software practice are foster-
ing competition, experimentation, controlled failure, and
cooperation.

What is DevSecOps?
BY BRETT HUNOLDT AND AARON RINEHART

The journey to DevSecOps begins with empowerment, enablement,
and education. Here's how to get started.

“DevSecOps enables organizations
to deliver inherently secure
software at DevOps speed.”

-Stefan Streichsbier

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. INTRODUCTION

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 5

Adapted from “What is DevSecOps” on Opensource.com, published under a
Creative Commons Attribution Share-Alike 4.0 International License at https://
opensource.com/article/19/1/what-devsecops.

How do you get started in DevSecOps?
Gettings started with DevSecOps involves shifting security
requirements and execution to the earliest possible stage in
the development process. It ultimately creates a shift in cul-
ture where security becomes everyone’s responsibility, not
only the security team’s.

You may have heard teams talking about a "shift left." If
you flatten the development pipeline into a horizontal line to
include the key stages of the product evolution—from initi-
ation to design, building, testing, and finally to operating—
the goal of a security is to be involved as early as possible.
This allows the risks to be better evaluated, socialized, and
mitigated by design. The "shift-left" mentality is about mov-
ing this engagement far left in this pipeline.

This journey begins with three key elements:
• �empowerment
• �enablement
• �education
Empowerment, in my view, is about releasing control and
allowing teams to make independent decisions without fear
of failure or repercussion (within reason). The only caveat in
this process is that information is critical to making informed
decisions (more on that below).

To achieve empowerment, business and executive sup-
port (which can be created through internal sales, presen-
tations, and establishing metrics to show the return on this
investment) is critical to break down the historic barriers
and siloed teams. Integrating security into the develop-
ment and operations teams and increasing both commu-
nication and transparency can help you begin the journey
to DevSecOps.

This integration and mobilization allows teams to focus
on a single outcome: Building a product for which they
share responsibility and collaborate on development and
security in a reliable way. This will take you most of the
way towards empowerment. It places the shared respon-
sibility for the product with the teams building it and en-
sures that any part of the product can be taken apart and
maintain its security.

Enablement involves placing the right tools and resourc-
es in the hands of the teams. It’s about creating a culture
of knowledge-sharing through forums, wikis, and informal
gatherings.

Creating a culture that focuses on automation and the
concept that repetitive tasks should be coded will like-
ly reduce operational overhead and strengthen security.
This scenario is about more than providing knowledge; it

is about making this knowledge highly accessible through
multiple channels and mediums (which are enabled through
tools) so that it can be consumed and shared in whatever
way teams or individuals prefer. One medium might work
best when team members are coding and another when

they are on the road. Make the tools accessible and simple
and let the team play with them.

Different DevSecOp teams will have different preferences,
so allow them to be independent whenever possible. This is
a delicate balancing exercise because you do want econo-
mies of scale and the ability to share among products. Col-
laboration and involvement in the selection and renewal of
these tools will help lower the barriers of adoption.

Finally, and perhaps most importantly, DevSecOps is
about training and awareness building. Meetups, social
gatherings, or formal presentations within the organiza-
tion are great ways for peers to teach and share their
learnings. Sometimes these highlight shared challenges,
concerns, or risks others may not have considered. Shar-
ing and teaching are also effective ways to learn and to
mentor teams.

In my experience, each organization's culture is unique,
so you can’t take a “one-size-fits-all” approach. Reach out
to your teams and find out what tools they want to use.
Test different forums and gatherings and see what works
best for your culture. Seek feedback and ask the teams
what is working, what they like, and why. Adapt and learn,
be positive, and never stop trying, and you’ll almost al-
ways succeed.

Authors
Brett Hunoldt – Technologist, Security and Privacy Advocate,
Parent, Gamer & Explorer.
Aaron Rinehart – DevSecOps, Security+Chaos Engineer-
ing=ChaoSlingr, Entrepreneur, RuggedSoftware, Innovation
Catalyst @UnitedHealthGrp.

Finally, and perhaps most
importantly, DevSecOps is about
training and awareness building.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/1/what-devsecops
https://opensource.com/article/19/1/what-devsecops
http://www.twitter.com/UnitedHealthGrp

TALKING TO NORMAL PEOPLE ABOUT SECURITY . . .

6	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

MOST PEOPLE
1 don’t realise quite how much
fun security is, or exactly how

sexy security expertise makes you to other people.2 We know
that it’s engrossing, engaging, and cool, they don’t. For this
reason, when security people go to the other people (let’s
just call them “normal people” for the purposes of this arti-
cle), and tell them that they’re doing something wrong, and
that they can’t launch their product, or deploy their applica-
tion, or that they must stop taking sales orders immediately
and probably for the next couple of days until this is fixed,
then those normal people don’t always react with the levels
of gratefulness that we feel is appropriate.

Sometimes, in fact, they will exhibit negative respons-
es—even quite personal negative responses—to these
suggestions.

The problem is this:
security folks know how
things should be, and that’s
secure. They’ve taken the
training, they’ve attended
the sessions, they’ve read
the articles, they’ve skimmed
the heavy books,3 and all
of these sources are quite
clear: everything must be
secure. And secure gener-
ally means “closed”—partic-
ularly if the security folks weren’t sufficiently involved in the
design, implementation, and operations processes. Nor-
mal people, on the other hand, generally just want things
to work. There’s a fundamental disjoint between those two

points of view that we’re not going to get fixed until security
is the very top requirement for any project from its inception
to its ending.4

Now, normal people aren’t stupid.5 They know that things
can’t always work perfectly; but they would like them to work
as well as they can. This is the gap7 that we need to cross.
I’ve talked about managed degradation as a concept [1]
before, and this is part of the story. One of the things that
we security people should be ready to do is explain that
there are risks to be mitigated.

For security people, those risks should be mitigated by
“failing closed.” It’s easy to stop risk: you just stop system
operation, and there’s no risk it can be misused. But for
many people, there are other risks: an example being that

the organisation may in fact
go completely out of busi-
ness because some _____8
security person turned the
ordering system off. If they’d
offered me the choice to bal-
ance the risk of stopping tak-
ing orders against the risk of
losing some internal compa-
ny data, would I have taken
it? Well yes, I might have.
But if I’m not offered the
option, and the risk isn’t ex-

plained, then I have no choice. These are the sorts of words
that I’d like to hear if I’m running a business.

It’s not just this type of risk, though. Coming to a project
meeting two weeks before launch and announcing that the

Talking to normal people
about security
 BY MIKE BURSELL

Normal people generally just want things to work.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/2/talking-about-security#1
https://opensource.com/article/18/2/talking-about-security#2
https://opensource.com/article/18/2/talking-about-security#3
https://opensource.com/article/18/2/talking-about-security#4
https://opensource.com/article/18/2/talking-about-security#5
https://opensource.com/article/18/2/talking-about-security#7
https://aliceevebob.com/2017/04/25/service-degradation-actually-a-good-thing/
https://aliceevebob.com/2017/04/25/service-degradation-actually-a-good-thing/
https://opensource.com/article/18/2/talking-about-security#8

. TALKING TO NORMAL PEOPLE ABOUT SECURITY

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 7

project can’t be deployed “because the calls against this API
aren’t being authenticated” is no good at all. To anybody.
As a developer, though, I have a different vocabulary—and
different concerns—to those of the business owner. How
about instead of saying, “you need to use authentication
on this API or you can’t proceed,” the security person asks,
“what would happen if data that was provided on this API
was incorrect, or provided by someone who wanted to dis-
rupt system operation?” In my experience, most developers
are interested—are invested—in the correct operation of the
system they’re running and the data it processes. Asking
questions that show the possible impact of lack of security is
much more likely to garner positive reactions than an initial
“discussion” that basically amounts to a “no.”

Don’t get me wrong; there are times when we, as security
people, need to be firm and stick to our guns.9 But in the
end, it’s the owners—of systems, or organisations, or busi-
ness units, or resources—who get to make the final decision.
It’s our job to talk to them in words they can understand and
ensure that they are as well informed as we can possibly
make them. Without just saying “no.”

Footnotes
1.	� By which I mean “those poor unfortunate souls who don’t

read these posts, unlike you, dear and intelligent reader.”
2.	� My wife, sadly, seems to fall into this category.
3.	� Which usually have a picture of a lock on the cover.
4.	� And good luck with that.

5.	� While we’ve all met our fair share of stupid normal people,
I’m betting you’ve met your fair share of stupid security
people, too, so it balances out.6

6.	� Probably more than balances out. Let’s leave it there.
7.	� Chasm.
8.	� Insert your favourite adjectival expletive here.
9.	� Figuratively: I don’t condone bringing any weapons,

including firearms, to your place of work.

Links
[1]	� https://aliceevebob.com/2017/04/25/service-degradation-

actually-a-good-thing/
[2]	 https://opensource.com/article/17/11/politics-linux-desktop
[3]	 https://aliceevebob.com/

Author
I’ve been in and around Open Source since around 1997,
and have been running (GNU) Linux as my main desktop at
home and work since then: not always easy... [2] I’m a secu-
rity bod and architect, and am currently employed as Chief
Security Architect for Red Hat. I have a blog – “Alice, Eve &
Bob” [3] – where I write (sometimes rather parenthetically)
about security. I live in the UK and like single malts.

This article originally appeared on Alice, Eve, and Bob – a security blog and is
republished with permission. [3]

Adapted from “Talking to normal people about security” on Opensource.com,
published under a Creative Commons Attribution Share-Alike 4.0 International
License at https://opensource.com/article/18/2/talking-about-security.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/2/talking-about-security#9
https://opensource.com/article/18/2/talking-about-security#6
https://aliceevebob.com/2017/04/25/service-degradation-actually-a-good-thing/
https://aliceevebob.com/2017/04/25/service-degradation-actually-a-good-thing/
https://opensource.com/article/17/11/politics-linux-desktop
https://aliceevebob.com/
https://opensource.com/article/17/11/politics-linux-desktop
https://aliceevebob.com/
https://aliceevebob.com/2017/12/19/using-words-that-normal-people-understand/
https://aliceevebob.com/
https://opensource.com/article/18/2/talking-about-security

WHO WILL PUSH BACK THE MOST ON A MOVE TO DEVOPS? . . .

8	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

YOU’RE MOVING to a DevOps [1] mod-
el for all or part of your

organisation: well done! Somebody, somewhere has made
the leap. Let’s assume, for the sake of this article, that you
have management buy-in: whatever hurdles needed to be
jumped, whatever mountains needed to be climbed to get
that momentous “Yes.” You’ve got tooling agreed, you’ve
worked out your processes,
and now all you need to do
is convince people to get
involved. Should be easy,
right? If only.

It turns out that not all peo-
ple are as enlightened as
you, the reader of this article.
Not everybody likes change,
and if there’s one thing
you can be sure of, it’s that
DevOps will bring change to
your organisation—how you
work, what you do, how you interact with other people within
the team and beyond.

I’m going to describe five types of people or roles who may
push against a move to DevOps, along with a few thoughts
about possible tactics to help move them along. We should
remember, however, that you may not be able to move ev-
erybody along, and that there may be good reasons why
people don’t want to change what they do, including the fact
that what they do at the moment may work pretty well, both
for them and for the organisation.

Not invented here: Fear of the unknown
“We’ve done it this way for the past [1/2/5/10/25] years, and
it’s worked till now.” We’ve all heard this. It may be true,
or it may not, but if your management has decided that a
move to DevOps should be undertaken, even if the exist-
ing practices have been working, there’s probably been a

realisation that things could be more efficient, or faster, or
more secure.

One of the defining points about this type of person or role
is that it often exhibits as a team concern. Teams become
used to a particular way of doing things and settle into roles
and routines that work for them. What you’re suggesting is
upsetting that team and making people do different things.

You should consider how to
make the most of the team
as it exists now, maybe even
transitioning members of
that team together or making
a point of celebrating their
successes, rather than sug-
gesting change is needed
because they have in some
way failed.

My domain: Fear of
loss of control

As a security person by background, this is one I’m very
aware of at a personal level. People who have gained a high
level of expertise in a particular area or domain often feel
threatened when asked to change how they work or apply
their knowledge. They will often feel they are being asked
to give up control and “water down” their expertise in a new
world where “everybody is the expert.”

What’s important to stress in this context is that, rather
than diluting their expertise, this is an opportunity to apply it
across a broader set of processes. Testing experts need to
explain to developers and operations folks, for instance, how
testing methodologies can be exposed in their realms. Typ-
ically, exposing experts to a wider audience will be seen by
them as a positive and, although there will always be “ivory
tower” type personalities who struggle to interact in a more
team setting, using them in ways where they take on a “con-
sulting” type role may offer positive opportunities.

Who will push back the most
on a move to DevOps?
 BY MIKE BURSELL

DevOps will definitely bring change to your organization, and not everyone
likes change. Here’s how to manage those who fight the inevitable.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/devops

. WHO WILL PUSH BACK THE MOST ON A MOVE TO DEVOPS?

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 9

Stuck in my way: Fear of the new
While very similar to “Not invented here,” this is more of an
individual than a group trait. Knowing what your tasks will be
on a day-to-day basis may feel stultifying to some but can be
very comforting to many, which is why they may not want to
move to a world that seems much more “freeform” and un-
structured. Not everybody can become the sort of generalist
who thrives on understanding all the different parts of the
DevOps cycle.

The good news is you will still need people who are
ready to settle down on specific tasks and complete them
in particular ways. In fact, though there may be initial con-
cerns about moving to a different way of working, explain-
ing that team members will have a fair amount of control
over exactly how they perform particular tasks may be a
positive message when trying to help this sort of individu-
al. Hopefully, you will be including training—whether formal
or informal—as part of your transformation to DevOps,
and the chance to learn new skills (thereby increasing in-
dividuals’ mobility and career prospects) may also act as
an incentive.

People managers: Fear of losing power
In many organisations, particularly those with a strongly
developed hierarchy, managers have a great deal of con-
trol over how their staff are deployed, what their tasks will
be, and how their career progression is managed. All of
these can be directly at odds with a more open DevOps
approach. For managers who have built their own little
empire, controlling their reports and subreports like pawns
around a chess board, a move to DevOps will be chal-
lenging. For managers who are keen to grow members
of their teams into more expert employees, who measure
their success on how many other teams ask for their re-
ports to be seconded to their teams, and who enjoy seeing
new skills and career progressions taking place, DevOps
should be an exciting opportunity.

Part of any fix to the problem of resistant people managers
is likely to be for executive management to offer both a car-
rot and a stick. The carrot can include changing how people
managers are rewarded into a mechanism that embraces
these new behaviours, while the stick may involve removing
team members from those who are obstructive or changing
those managers’ role definitions.

Unions: Fear of lack of certainty
In certain industries and geographies, there are strong
unions. A core mission of unions is to protect workers from
exploitation by management who may try to impose changes
on workers that will not benefit them. Unions are by default
(and understandably) suspicious of changes introduced by
management, so any move to DevOps that has been “bless-
ed” by management may raise concerns and resistance from
unions and members of unions. In some cases, employees

may have very carefully described job roles that make it diffi-
cult to introduce ways of working where they are expected to
take a more generalist role and learn new skills—both char-
acteristics of DevOps.

The good news is that DevOps can provide more control
to members of the team, in many different ways, somewhat
reducing the control exercised by the management function.
Explaining this and ensuring that appropriate checks are put
in place to safeguard jobs will be key tasks in convincing
unions and their members that this is a good change for
them. The other thing that should happen, of course, is that
management should have included them early on in the pro-
cess to make sure there has been buy-in from the beginning,
rather than a decision “sprung” on them at the last moment.

Some final thoughts
As we progress to a bright new future, it is worth bearing in
mind that a general good for all does not always translate
into a positive change for every individual. It is hard to argue
that the construction of sewerage systems is anything other
than a general good, but it hits those whose only job has ever
been collecting the waste from the streets. Hopefully you don’t
see your move to DevOps as the construction of a new set of
sewers for your organisation, but be aware of those for whom
change can be difficult and disruptive. There can be a human
cost to even the most well-intentioned development.

For me, the most important point to remember is that
when people get defensive—and occasionally aggres-
sive—it is generally because they feel threatened, and in all
these cases we’ve examined, change can be threatening.
These people are your colleagues, they are people, too,
and they should be treated with respect and consideration
as people, not just as roles or obstacles to be overcome.
In some cases, preserving the status quo in particular parts
of your organisation may be the safest approach—for now,
at least.

Links
[1]	 https://opensource.com/resources/devops
[2]	� https://opensource.com/article/17/11/politics-linux-desktop
[3]	 �https://aliceevebob.com/�

Author
I’ve been in and around Open Source since around 1997,
and have been running (GNU) Linux as my main desktop at
home and work since then: not always easy... [2] I’m a se-
curity bod and architect, and am currently employed as Chief
Security Architect for Red Hat. I have a blog – “Alice, Eve
& Bob” [3] – where I write (sometimes rather parenthetically)
about security. I live in the UK and like single malts.

Adapted from “Who will push back the most on a move to DevOps?” on
Opensource.com, published under a Creative Commons Attribution Share-
Alike 4.0 International License at https://opensource.com/article/18/9/
devops-pushback.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/devops
https://opensource.com/article/17/11/politics-linux-desktop
https://aliceevebob.com/
https://opensource.com/article/17/11/politics-linux-desktop
https://aliceevebob.com/
https://opensource.com/article/18/9/devops-pushback
https://opensource.com/article/18/9/devops-pushback

3 SECURITY TIPS FOR SOFTWARE DEVELOPERS . . .

10	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

EVERY DEVELOPER knows the impor-
tance of following

best security practices. But too often we cut corners, maybe
because we have to work hard until those security practic-
es sink in. Unfortunately, that usually takes something like
seeing a security malpractice that’s so bad it gets marked in
indelible ink in our brains.

I’ve seen a lot of instances of poor security practices
during my career as a sysadmin, but the three I’m going to
describe here are basic things that every software developer
should avoid. It’s important to note that I’ve seen every single
one of these errors committed by large companies and expe-
rienced developers, so you
can’t chalk these mistakes
up to novice junior engineers.

1. Don’t encrypt
passwords, hash them.
Earlier in my career, I
worked for a company that
used a management sys-
tem that held some pretty
important information. One
day I was asked to perform
a security review of the net-
work and the software that stored our critical information.
I spent a few minutes poking around before deciding to
fire up Wireshark to see what traffic was running around
the network.

I used my local workstation, logged into the information
system, and noticed something weird. Even though this
was before SSL was all the rage, I did not expect to see
data in plain text containing bytes such as “username” and
“password.” Upon closer inspection, it appeared that the
system was sending my username and a random string—
that was not my password—across the wire. I couldn’t let

it rest. I tried logging in again, except this time I purposely
entered my password wrong. I didn’t change all of it, just a
single character.

What I expected to see was a completely different random
string representing the password. Instead, only the first two
bytes changed. This was interesting. Even though I was rel-
atively inexperienced, I knew that if the representation of my
password were hashed, as it should have been, it would be
entirely different, not just two characters different. Heck, even
a GOOD encryption scheme would do that. This, however,
was not doing that at all. I tried two more wrong passwords.

Armed with some sheets of paper and a pencil, I spent
the next two hours figuring
out the decryption scheme.
At the end of those two
hours, I had a Python script
that could take any of those
“encrypted” passwords and
decrypt it to reveal the orig-
inal password, something
that no one should ever be
able to do. I’m sure the per-
son who dreamed up this
encryption scheme never
thought that someone with

a couple of hours on their hands would ever sit down and
work it out, but I did.

Why? Because I could.
If you have to store passwords for comparison, never en-

crypt them, as there is always the possibility that someone
can find a decryption algorithm or key. A hash has no direct
reverse, meaning no one can reverse it unless they already
have a table with the mapping from plain text to hash (or they
simply guess it). Knowing the hash mechanism doesn’t be-
tray the integrity of the data, whereas knowing the encryption
scheme and keys will.

3 security tips for
software developers
BY PETE SAVAGE

Don’t make these common security mistakes that leave you vulnerable to attack.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. 3 SECURITY TIPS FOR SOFTWARE DEVELOPERS

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 11

Adapted from “3 security tips for software developers” on Opensource.
com, published under a Creative Commons Attribution Share-Alike 4.0
International License at https://opensource.com/article/17/6/3-security-
musts-software-developers.

2. Don’t put secret backdoors in software.
As part of a third-party software rollout, I was supporting
some users who told me that their logins didn’t work. This
was a paid-for service provided by a vendor, but before trou-
bling with what is usually one of the most annoying support
calls (“My login doesn’t work”), I thought I would try it myself.
It was true, the logins didn’t work.

The system was a web-based learning management
platform, of which we had paid for a small portion of its
greater capabilities. As I poked around on the login page
a little more, something caught my eye. One character in
one of the words looked different. Perhaps it was a different
font, a slightly different shaped “o.” Me being me, I viewed
the page in source view, and noticed that there was a link
associated with this particular letter. The link was purpose-
fully hidden. The mouse cursor didn’t change on hovering
over it.

I gingerly loaded that mystery link into a new browser win-
dow. All of a sudden, I was met with a screen detailing an en-
tire suite of computers, giving me full control over what they
could do and the ability to shut them down, reboot them, take
screenshots, you name it. I telephoned the software vendor
and asked to speak to the IT guy. After jumping through a
few hoops, I finally got to someone who knew what I was
talking about.

“Oh yeah!” he said. “We put that there for easy access, and
no one ever found it until you. We’ll remove it right away.” Be-
fore we ended the call, he asked me one final question: “Why
did you start digging around in the HTML?”

My answer was simple: “Because I could.”
It’s just not worth the risk of putting some fancy backdoor

access into any system, because you can bet your bottom
dollar someone will find it. No matter how obscure, code
analysis—and just general prodding and poking—often
yields the most surprising and interesting results.

3. Authenticate users on every page—not only
on the login page.
At one point in my career, I was involved with a software
development project that was being implemented by a sea-
soned developer. Feeling a little out of my league with this

particular application, I told my manager that we would need
an in-depth security review of the code. I was asked to look
anyway to see what I could find. I started playing with the
app, logged in, and viewed some of the data. Then I found
something really interesting.

If I bookmarked one of the URLs that I hit further into the
system, I could just copy and paste it into another browser,
and boom! I’d be there, without having to log in. I asked the
developer, “Why don’t you check the login on every page?
If I just enter the URL of a page further into the system, I
can get there without logging in.” He asked, “Why would
you do that?”

“Because I can,” I replied.

Don’t leave anything up to chance
Even seasoned developers can make these mistakes. They
think that someone won’t ever try to delve deeper into a sys-
tem that they have no real access to. The problem is people
will prod, they will poke. The overriding advice I, someone
who only dabbles in security, want to impart here is: Don’t
leave anything up to chance. There are people out there like
me, who like to dig into things and see why and how they
work. But there are also a great many people who will dig to
exploit your flaws and vulnerabilities.

Why? Because they can!

Author
Peter is a passionate open source enthusiast who has been
promoting and using open source products for the last 10
years. He has volunteered in many different areas, starting in
the Ubuntu community, before moving off into the realms of
audio production and later into writing. Career wise he spent
much of his early years managing and building datacenters
as a sysadmin, before ending up working for Red Hat as a
Principal Quailty Engineer for the CloudForms product. He
occasionally pops out a book, loves photography, occasion-
ally cooks, and lives in the UK with his wife and two children.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/6/3-security-musts-software-developers
https://opensource.com/article/17/6/3-security-musts-software-developers

5 WAYS DEVSECOPS CHANGES SECURITY . . .

12	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

THERE’S BEEN AN ongoing kerfuffle over
whether we need to

expand DevOps [1] to explicitly bring in security. After all, the
thinking goes, DevOps [2] has always been something of a
shorthand for a broad set of new practices, using new tools
(often open source) and built on more collaborative cultures.
Why not DevBizOps [3] for
better aligning with business
needs? Or DevChatOps to
emphasize better and faster
communications?

However, as John Wil-
lis wrote earlier this year [4]
on his coming around to the
DevSecOps [5] terminology,
“Hopefully, someday we will
have a world where we no
longer have to use the word
DevSecOps and security will
be an inherent part of all service delivery discussions. Until
that day, and at this point, my general conclusion is that it’s
just three new characters. More importantly, the name really
differentiates the problem statement in a world where we as
an industry are not doing a great job on information security.”

So why aren’t we doing a great job on information se-
curity, [6] and what does it mean to do a great job in a
DevSecOps context?

We’ve arguably never done a great job of information se-
curity in spite of (or maybe because of) the vast industry of
complex point products addressing narrow problems. But we
also arguably did a good enough job during the era when
defending against threats focused on securing the perime-
ter, network connections were limited, and most users were
employees using company-provided devices.

Those circumstances haven’t accurately described most
organizations’ reality for a number of years now. But the

current era, which brings in not only DevSecOps but new
application architectural patterns, development practices,
and an increasing number of threats, defines a stark new
normal that requires a faster pace of change. It’s not so
much that DevSecOps in isolation changes security, but
that infosec circa 2018 requires new approaches.

Consider these five areas.

Automation
Lots of automation is a hall-
mark of DevOps generally.
It’s partly about speed. If
you’re going to move fast
(and not break things), you
need to have repeatable
processes that execute with-
out a lot of human interven-
tion. Indeed, automation is
one of the best entry points

for DevOps, even in organizations that are still mostly work-
ing on monolithic legacy apps. Automating routine process-
es associated with configurations or testing with easy-to-use
tools such as Ansible [7] is a common quick hit for starting
down the path to DevOps.

DevSecOps is no different. Security today is a continuous
process rather than a discrete checkpoint in the application
lifecycle, or even a weekly or monthly check. When vulnera-
bilities are found and fixes issued by a vendor, it’s important
they be applied quickly given that exploits taking advantage
of those vulnerabilities will be out soon.

“Shift left”
Traditional security is often viewed as a gatekeeper at the
end of the development process. Check all the boxes and
your app goes into production. Otherwise, try again. Security
teams have a reputation for saying no a lot.

5 ways DevSecOps
changes security
BY GORDON HAFF

Security must evolve to keep up with the way today’s apps are written and deployed.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/devops
https://opensource.com/tags/devops
https://opensource.com/article/18/5/steps-apply-devops-culture-beyond-it
https://www.devsecopsdays.com/articles/its-just-a-name
https://opensource.com/article/18/4/devsecops
https://opensource.com/article/18/6/where-cycle-security-devops
https://opensource.com/tags/ansible

. 5 WAYS DEVSECOPS CHANGES SECURITY

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 13

Therefore, the thinking goes, why not move security ear-
lier (left in a typical left-to-right drawing of a development
pipeline)? Security may still say no, but the consequences
of rework in early-stage development are a lot less than they
are when the app is complete and ready to ship.

I don’t like the “shift left” term, though. It implies that
security is still a one-time event that’s just been moved
earlier. Security needs to be a largely automated process
everywhere in the application lifecycle, from the supply
chain to the development and test process all the way
through deployment.

Manage dependencies
One of the big changes we see with modern app devel-
opment is that you often don’t write most of the code. Us-
ing open source libraries and frameworks is one obvious
case in point. But you may also just use external services
from public cloud providers or other sources. In many
cases, this external code and services will dwarf what you
write yourself.

As a result, DevSecOps needs to include a serious fo-
cus on your software supply chain [8]. Are you getting your
software from trusted sources? Is it up to date? Is it inte-
grated into the security processes that you use for your
own code? What policies do you have in place for which
code and APIs you can use? Is commercial support avail-
able for the components that you are using for your own
production code?

No set of answers are going to be appropriate in all cas-
es. They may be different for a proof-of-concept versus an
at-scale production workload. But, as has been the case in
manufacturing for a long time (and DevSecOps has many
analogs in how manufacturing has evolved), the integrity of
the supply chain is critical.

Visibility
I’ve talked a lot about the need for automation through-
out all the stages of the application lifecycle. That makes
the assumption that we can see what’s going on in each of
those stages.

Effective DevSecOps requires effective instrumentation
so that automation knows what to do. This instrumentation
falls into a number of categories. There are long-term and
high-level metrics that help tell us if the overall DevSecOps
process is working well. There are critical alerts that require
immediate human intervention (the security scanning sys-
tem is down!). There are alerts, such as for a failed scan,
that require remediation. And there are logs of the many pa-
rameters we capture for later analysis (what’s changing over
time? What caused that failure?).

Services vs. monoliths
While DevSecOps practices can be applied across many
types of application architectures, they’re most effective with

small and loosely coupled components that can be updated
and reused without potentially forcing changes elsewhere in
the app. In their purest form, these components can be mi-
croservices [9] or functions, but the general principles apply
wherever you have loosely coupled services communicating
over a network.

This pattern does introduce some new security chal-
lenges. The interactions between components can be
complex and the total attack surface can be larger be-
cause there are now more entry points to the application
across the network.

On the other hand, this type of architecture also means
that automated security and monitoring also has more
granular visibility into the application components be-
cause they’re no longer buried deep within a monolithic
application.

Don’t get too wrapped up in the DevSecOps term, but
take it as a reminder that security is evolving because the
way that we write and deploy applications is evolving.

Links
[1]	� https://opensource.com/resources/devops
[2]	� https://opensource.com/tags/devops
[3]	� https://opensource.com/article/18/5/steps-apply-devops-

culture-beyond-it
[4]	� https://www.devsecopsdays.com/articles/its-just-a-name
[5]	� https://opensource.com/article/18/4/devsecops
[6]	� https://opensource.com/article/18/6/where-cycle-security-

devops
[7]	� https://opensource.com/tags/ansible
[8]	� https://opensource.com/article/17/1/be-open-source-

supply-chain�
[9]	� https://opensource.com/tags/microservices	�

Author
Gordon Haff is Red Hat technology evangelist, is a frequent
and highly acclaimed speaker at customer and industry
events, and helps develop strategy across Red Hat’s full port-
folio of cloud solutions. He is the co-author of Pots and Vats
to Computers and Apps: How Software Learned to Pack-
age Itself in addition to numerous other publications. Prior
to Red Hat, Gordon wrote hundreds of research notes, was
frequently quoted in publications like The New York Times
on a wide range of IT topics, and advised clients on prod-
uct and marketing strategies. Earlier in his career, he was
responsible for bringing a wide range of computer systems,
from minicomputers to large UNIX servers, to market while
at Data General. Gordon has engineering degrees from MIT
and Dartmouth and an MBA from Cornell’s Johnson School.
Follow me at @ghaff

Adapted from “5 ways DevSecOps changes security” on Opensource.com,
published under a Creative Commons Attribution Share-Alike 4.0 International
License at https://opensource.com/article/18/9/devsecops-changes-security.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/1/be-open-source-supply-chain
https://opensource.com/tags/microservices
https://opensource.com/resources/devops
https://opensource.com/tags/devops
https://opensource.com/article/18/5/steps-apply-devops-culture-beyond-it
https://opensource.com/article/18/5/steps-apply-devops-culture-beyond-it
https://www.devsecopsdays.com/articles/its-just-a-name
https://opensource.com/article/18/4/devsecops
https://opensource.com/article/18/6/where-cycle-security-devops
https://opensource.com/article/18/6/where-cycle-security-devops
https://opensource.com/tags/ansible
https://opensource.com/article/17/1/be-open-source-supply-chain
https://opensource.com/article/17/1/be-open-source-supply-chain
https://opensource.com/tags/microservices
https://twitter.com/ghaff
https://opensource.com/article/18/9/devsecops-changes-security

GET INVOLVED | ADDITIONAL RESOURCES . . .

14	 GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM

GET INVOLVED

ADDITIONAL RESOURCES

If you find these articles useful, get involved! Your feedback helps improve the status
quo for all things DevOps.
Contribute to the Opensource.com DevOps resource collection, and join the team of
DevOps practitioners and enthusiasts who want to share the open source stories
happening in the world of IT.
The Open Source DevOps team is looking for writers, curators, and others who can help
us explore the intersection of open source and DevOps. We’re especially interested in
stories on the following topics:

• �DevOps practical how to’s
• �DevOps and open source
• �DevOps and talent
• �DevOps and culture
• �DevSecOps/rugged software

Learn more about the Opensource.com DevOps team: https://opensource.com/devops-team

The open source guide to DevOps monitoring tools
This free download for sysadmin observability tools includes analysis of open source
monitoring, log aggregation, alerting/visualizations, and distributed tracing tools.
Download it now: The open source guide to DevOps monitoring tools

The ultimate DevOps hiring guide
This free download provides advice, tactics, and information about the state of DevOps
hiring for both job seekers and hiring managers.
Download it now: The ultimate DevOps hiring guide

The Open Organization Guide to IT Culture Change
In The Open Organization Guide to IT Culture Change, more than 25 contributors from
open communities, companies, and projects offer hard-won lessons and practical ad-
vice on how to create an open IT department that can deliver better, faster results and
unparalleled business value.
Download it now: The Open Organization Guide to IT Culture Change

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.Opensource.com
https://opensource.com/devops-team
https://www.Opensource.com
https://opensource.com/devops-team
https://opensource.com/downloads/devops-monitoring-guide
https://opensource.com/downloads/devops-hiring-guide
https://opensource.com/open-organization/resources/culture-change
https://opensource.com/open-organization/resources/culture-change

. WRITE FOR US

GETTING STARTED WITH DEVSECOPS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 15

Would you like to write for Opensource.com? Our editorial calendar includes upcoming themes,
community columns, and topic suggestions: https://opensource.com/calendar
Learn more about writing for Opensource.com at: https://opensource.com/writers
We're always looking for open source-related articles on the following topics:

Big data: Open source big data tools, stories, communities, and news.
Command-line tips: Tricks and tips for the Linux command-line.
Containers and Kubernetes: Getting started with containers, best practices,
security, news, projects, and case studies.
Education: Open source projects, tools, solutions, and resources for educators,
students, and the classroom.
Geek culture: Open source-related geek culture stories.
Hardware: Open source hardware projects, maker culture, new products, howtos,
and tutorials.
Machine learning and AI: Open source tools, programs, projects and howtos for
machine learning and artificial intelligence.
Programming: Share your favorite scripts, tips for getting started, tricks for
developers, tutorials, and tell us about your favorite programming languages and
communities.
Security: Tips and tricks for securing your systems, best practices, checklists,
tutorials and tools, case studies, and security-related project updates.

WRITE FOR US

Keep in touch!
Sign up to receive roundups of our best articles,

giveaway alerts, and community announcements.

Visit opensource.com/email-newsletter to subscribe.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.Opensource.com
https://opensource.com/calendar
https://www.Opensource.com
https://opensource.com/writers
https://opensource.com/email-newsletter

	001-001_Cover
	002-002_AboutOS
	003-003_TOC
	004-005_Intro
	006-007_Ch1_Talking
	008-009_Ch2_Push_Back
	010-011_Ch3_SecurityTips
	012-013_Ch4_5_Ways
	014-014_Get_Involved
	015-015_Write_For_Us

