
A guide to Java
serverless functions

Opensource.com

Why choose Java for serverless application
development and how to get started

http://www.opensource.com

OPENSOURCE.COM .

2	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 3

. ABOUT THE AUTHOR

DANIEL OH Technical Marketing,
Developer Advocate,

CNCF Ambassador, Public Speaker, Published
Author, Quarkus, Red Hat Runtimes.
Follow me at @danieloh30

DANIEL OH

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/danieloh30

CONTENTS . . .

4	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

INTRODUCTION

CHAPTERS

What is serverless with Java? 	 5

Write your own serverless functions 	 7

Make your app run faster with GraalVM in Kubernetes	 10

Making portable functions across serverless platforms	 13

Bind a cloud event to Knative 	 16

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 5

. WHAT IS SERVERLESS WITH JAVA?

FOR DECADES, ENTERPRISES have developed
business-critical applications

on various platforms, including physical servers, virtual ma-
chines, and cloud environments. The one thing these appli-
cations have in common across industries is they need to
be continuously available (24x7x365) to guarantee stability,
reliability, and performance, regardless of demand. There-
fore, every enterprise must be responsible for the high
costs of maintaining an infrastructure (e.g., CPU, memory,
disk, networking, etc.) even if actual resource utilization is
less than 50%.

Serverless architecture was developed to help solve these
problems. Serverless allows developers to build and run ap-
plications on demand, guaranteeing high availability without
having to manage servers in multi- and hybrid-cloud environ-
ments. Behind the scenes, there are still many servers in the
serverless topology, but they are abstracted away from appli-
cation development. Instead, cloud providers use serverless
services for resource management, such as provisioning,
maintaining, networking, and scaling server instances.

Because of its effectiveness, the serverless development
model is now a requirement for enterprises that want to spin
up their business applications on demand rather than run-
ning them all the time.

Many open source projects have been created to man-
age serverless applications on Kubernetes [1] clusters with
the Linux container package over virtual machines. The
CNCF's Interactive Serverless Landscape [2] is a guide to
open source projects, tools, frameworks, and public cloud
platforms that enable DevOps teams to handle serverless
applications.

(CNCF, Apache License 2.0)

Developers can write code then deploy it quickly to various
serverless environments. Then the serverless application re-
sponds to demand and automatically scales up and down
as needed.

You may be wondering what programming language and
runtime are best suited for serverless application develop-
ment to integrate with the technologies in the figure above.
There's not just one answer to this question, but let's take
a step back to discuss the application runtime that is most
popular for developing business applications in enterprise
production environments: Java.

According to Developer Economics [3], as of Q3 2020,
more than 8 million enterprise developers are still using
Java to achieve their business requirements. Yet, accord-
ing to a 2020 NewRelic survey [4], Java (at 6%) is clearly
not the top choice for forward-thinking developers using a
popular cloud service.

Data from NewRelic's Serverless Benchmark Report (Daniel Oh,
CC BY-SA 4.0)
Resource usage, response times, and latency are criti-
cal in serverless development. Serverless offerings from
public cloud providers are usually metered on-demand,
charged only when a serverless application is up, through an
event-driven execution model. Therefore, enterprises don't
pay anything when a serverless application is idle or scaled
down to zero.

The state of Java with containers
With this background, you may be asking: "Why don't de-
velopers try to use the Java stack for serverless applica-
tion development given that existing business applications
are most likely developed on Java technologies? "

What is serverless with Java?
Java is still one of the most popular languages for developing enterprise applications. So, why are
serverless developers shying away from it?

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/6/reasons-kubernetes
https://landscape.cncf.io/serverless?zoom=150
https://landscape.cncf.io/serverless?zoom=150
https://github.com/cncf/landscape/blob/master/LICENSE
https://developereconomics.com/
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://creativecommons.org/licenses/by-sa/4.0/

6	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

As you can see, you get higher density as you go from
left to right on this diagram. This is the reason developers
shy away from Java (including Spring Boot [7], an opinion-
ated microservice Java framework) when writing serverless
applications on the cloud, containers, and Kubernetes.

What's next?
Enterprises can gain significant benefits by implementing
serverless applications, but resource-density issues cause
them to avoid using the Java stack for developing server-
less application development on Kubernetes. But choosing
a different language creates a burden on the millions of Java
developers worldwide. Therefore, in the next article in this
series, I will guide you on how to get started with Java server-
less functions instead of choosing a different language.

Links
[1]	 https://opensource.com/article/19/6/reasons-kubernetes
[2]	 �https://landscape.cncf.io/serverless?zoom=150
[3]	� https://developereconomics.com/
[4]	 �https://newrelic.com/resources/ebooks/serverless-

benchmark-report-aws-lambda-2020
[5]	� https://nodejs.org/
[6]	 �https://golang.org/
[7]	 https://spring.io/projects/spring-boot

Here is the hidden truth: It's hard to optimize Java appli-
cations in the new immutable infrastructure, also known as
container platforms (e.g., Kubernetes).

(Daniel Oh, CC BY-SA 4.0)

This diagram depicts the differences in memory resource
usage between a Java process and competing languag-
es and frameworks, such as Node.js [5] and Go [6]. Java
HotSpot has the largest footprint, which includes the
heap memory allocated per Java Virtual Machine (JVM)
instance. The middle shows how much smaller each pro-
cess is on Node.js compared to Java. And finally, Go is
a compiled language popular on the cloud due to its low
memory consumption.

WHAT IS SERVERLESS WITH JAVA? . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://spring.io/projects/spring-boot
https://opensource.com/article/19/6/reasons-kubernetes
https://landscape.cncf.io/serverless?zoom=150
https://developereconomics.com/
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://nodejs.org/
https://golang.org/
https://spring.io/projects/spring-boot
https://creativecommons.org/licenses/by-sa/4.0/
https://nodejs.org/
https://golang.org/

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 7

. WRITE YOUR OWN SERVERLESS FUNCTIONS

THE SERVERLESS JAVA JOURNEY [1] started
out with functions—

small snippets of code running on demand. This phase
didn't last long. Although functions based on virtual ma-
chine architecture in the 1.0 phase made this paradigm
very popular, as the graphic below shows, there were lim-
its around execution time, protocols, and poor local-devel-
opment experience.

Developers then realized that they could apply the same
serverless traits and benefits to microservices and Linux con-
tainers. This launched the 1.5 phase, where some serverless
containers completely abstracted Kubernetes [2], delivering
the serverless experience through Knative [3] or another ab-
straction layer that sits on top of it.

In the 2.0 phase, serverless starts to handle more complex
orchestration and integration patterns combined with some
level of state management. More importantly, developers
want to keep using a familiar application runtime, Java, to
run a combination of serverless and non-serverless work-
loads in legacy systems.

(Daniel Oh, CC BY-SA 4.0)

Before Java developers can start developing new serverless
functions, their first task is to choose a new cloud-native Java
framework that allows them to run Java functions quicker
with a smaller memory footprint than traditional monolithic
applications. This can be applied to various infrastructure
environments, from physical servers to virtual machines to
containers in multi- and hybrid-cloud environments.

Developers might consider an opinionated Spring frame-
work that uses the java.util.function package in Spring
Cloud Function [4] to support the development of impera-
tive and reactive functions. Spring also enables developers
to deploy Java functions to installable serverless platforms
such as Kubeless [5], Apache OpenWhisk [6], Fission [7],
and Project Riff [8]. However, there are concerns about slow
startup and response times and heavy memory-consuming

processes with Spring. This problem can be worse when
running Java functions on scalable container environments
such as Kubernetes.

Quarkus [9] is a new open source cloud-native Java frame-
work that can help solve these problems. It aims to design
serverless applications and write cloud-native microservices
for running on cloud infrastructures (e.g., Kubernetes).

Quarkus rethinks Java, using a closed-world approach
to building and running it. It has turned Java into a runtime
that's comparable to Go. Quarkus also includes more than
100 extensions that integrate enterprise capabilities, includ-
ing database access, serverless integration, messaging, se-
curity, observability, and business automation.

Here is a quick example of how developers can scaffold a
Java serverless function project with Quarkus.

1. Create a Quarkus serverless Maven project
Developers have multiple options to install a local Kuber-
netes cluster, including Minikube [10] and OKD (OpenShift
Kubernetes Distribution) [11]. This tutorial uses an OKD clus-
ter for a developer's local environment because of the easy
setup of serverless functionality on Knative and DevOps
toolings. These guides for OKD installation [12] and Knative
operator installation [13] offer more information about setting
them up.

The following command generates a Quarkus project
(e.g., quarkus-serverless-restapi) to expose a simple
REST API and download a quarkus-openshift extension for
Knative service deployment:

$ mvn io.quarkus:quarkus-maven-plugin:2.0.3.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=quarkus-serverless-restapi \

 -Dextensions="openshift" \

 -DclassName="org.acme.getting.started.GreetingResource"

2. Run serverless functions locally
Run the application using Quarkus development mode to
check if the REST API works, then tweak the code a bit:

$./mvnw quarkus:dev

Write your own serverless functions
Quarkus allows you to develop serverless workloads with familiar Java technology.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/21/5/what-serverless-java
https://opensource.com/article/19/6/reasons-kubernetes
https://cloud.google.com/knative/
https://creativecommons.org/licenses/by-sa/4.0/
https://spring.io/serverless
https://kubeless.io/
https://openwhisk.apache.org/
https://fission.io/
https://projectriff.io/
https://quarkus.io/
https://minikube.sigs.k8s.io/docs/start/
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/installing/index.html
https://knative.dev/docs/install/knative-with-operators/

8	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

quarkus.kubernetes.deploy=true <5>

quarkus.openshift.build-strategy=docker <6>

<1> �Define a project name where you deploy a server-
less application

<2> The container registry to use
<3> �Use self-signed certs in this simple example to

trust them
<4> Enable the generation of Knative resources
<5> �Instruct the extension to deploy to OpenShift after

the container image is built
<6> Set the Docker build strategy

This command builds the application then deploys it directly
to the OKD cluster:

$./mvnw clean package -DskipTests

Note: Make sure to log in to the right project (e.g.,
quarkus-serverless-restapi) by using the oc login com-
mand ahead of time.

The output should end with BUILD SUCCESS.
Add a Quarkus label to the Knative service with this oc

command:

$ oc label rev/quarkus-serverless-restapi-00001

app.openshift.io/runtime=quarkus --overwrite

Then access the OKD web console to go to the Topology
view in the Developer perspective [15]. You might see that
your pod (serverless function) is already scaled down to zero
(white-line circle).

(Daniel Oh, CC BY-SA 4.0)

4. Test the functions on Kubernetes
Retrieve a route URL of the serverless function by running the
following oc command:

The output will look like this:

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

IN�FO [io.quarkus] (Quarkus Main Thread) quarkus-serverless-

restapi 1.0.0-SNAPSHOT on JVM (powered by Quarkus xx.xx.xx.)

started in 2.386s. Listening on: http://localhost:8080

IN�FO [io.quarkus] (Quarkus Main Thread) Profile dev activated.

Live Coding activated.

IN�FO [io.quarkus] (Quarkus Main Thread) Installed features:

[cdi, kubernetes, resteasy]

Note: Keep your Quarkus application running to use
Live Coding. This allows you to avoid having to rebuild,
redeploy the application, and restart the runtime when-
ever the code changes.

Now you can hit the REST API with a quick curl command.
The output should be Hello RESTEasy:

$ curl localhost:8080/hello

Hello RESTEasy

Tweak the return text in GreetingResource.java:

 public String hello() {

 return "Quarkus Function on Kubernetes";

 }

You will see new output when you reinvoke the REST API:

$ curl localhost:8080/hello

Quarkus Function on Kubernetes

There's not been a big difference between normal microser-
vices and serverless functions. A benefit of Quarkus is that
it enables developers to use any microservice to deploy Ku-
bernetes as a serverless function.

3. Deploy the functions to a Knative service
If you haven't already, create a namespace [14] (e.g.,
quarkus-serverless-restapi) on your OKD (Kubernetes)
cluster to deploy this Java serverless function.

Quarkus enables developers to generate Knative and Ku-
bernetes resources by adding the following variables in src/
main/resources/application.properties:

quarkus.container-image.group=quarkus-serverless-restapi <1>

qu�arkus.container-image.registry=image-registry.openshift-

image-registry.svc:5000 <2>

quarkus.kubernetes-client.trust-certs=true <3>

quarkus.kubernetes.deployment-target=knative <4>

WRITE YOUR OWN SERVERLESS FUNCTIONS .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.okd.io/latest/applications/application_life_cycle_management/odc-viewing-application-composition-using-topology-view.html
https://creativecommons.org/licenses/by-sa/4.0/
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 9

. WRITE YOUR OWN SERVERLESS FUNCTIONS

What's next?
The serverless journey has evolved, starting with functions
on virtual machines to serverless containers and integration
with enterprise legacy systems. Along this journey, enter-
prise developers can still use familiar technologies like Java
for developing serverless functions by using Quarkus to cre-
ate a project then build and deploy it to Kubernetes with a
Knative service.

The next article in this series will guide you on optimizing
Java serverless functions in Kubernetes for faster startup
time and small memory footprints at scale.

Links
[1]	 �https://opensource.com/article/21/5/what-serverless-java
[2]	 �https://opensource.com/article/19/6/reasons-kubernetes
[3]	 �https://cloud.google.com/knative/
[4]	 �https://spring.io/serverless
[5]	 �https://kubeless.io/
[6]	� https://openwhisk.apache.org/
[7]	 https://fission.io/
[8]	 https://projectriff.io/
[9]	 https://quarkus.io/
[10]	 https://minikube.sigs.k8s.io/docs/start/
[11]	 https://docs.okd.io/latest/welcome/index.html
[12]	 https://docs.okd.io/latest/installing/index.html
[13]	 https://knative.dev/docs/install/knative-with-operators/
[14]	� https://docs.okd.io/latest/applications/projects/configuring-

project-creation.html
[15]	� https://docs.okd.io/latest/applications/application_life_

cycle_management/odc-viewing-application-composition-
using-topology-view.html

$ oc get rt/quarkus-serverless-restapi

[...]

NAME URL READY REASON

quarkus-serverless[...] http://quarkus[...].SUBDOMAIN True

Access the route URL with a curl command:

$ �curl http://quarkus-serverless-restapi-quarkus-serverless-

restapi.SUBDOMAIN/hello

In a few seconds, you will get the same result as you got
locally:

Quarkus Function on Kubernetes

When you return to the Topology view in the OKD cluster, the
Knative service scales up automatically.

(Daniel Oh, CC BY-SA 4.0)

This Knative service pod will go down to zero again in 30
seconds because of Knative serving's default setting.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/21/5/what-serverless-java
https://opensource.com/article/19/6/reasons-kubernetes
https://cloud.google.com/knative/
https://spring.io/serverless
https://kubeless.io/
https://openwhisk.apache.org/
https://fission.io/
https://projectriff.io/
https://quarkus.io/
https://minikube.sigs.k8s.io/docs/start/
https://docs.okd.io/latest/welcome/index.html
https://docs.okd.io/latest/installing/index.html
https://knative.dev/docs/install/knative-with-operators/
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html
https://docs.okd.io/latest/applications/application_life_cycle_management/odc-viewing-application-composition-using-topology-view.html
https://docs.okd.io/latest/applications/application_life_cycle_management/odc-viewing-application-composition-using-topology-view.html
https://docs.okd.io/latest/applications/application_life_cycle_management/odc-viewing-application-composition-using-topology-view.html
https://creativecommons.org/licenses/by-sa/4.0/

10	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

MAKE YOUR APP RUN FASTER WITH GRAALVM IN KUBERNETES .

A FASTER STARTUP and smaller mem-
ory footprint always

matter in Kubernetes [1] due to the expense of running thou-
sands of application pods and the cost savings of doing it
with fewer worker nodes and other resources. Memory is
more important than throughput on containerized microser-
vices on Kubernetes because:

• �It's more expensive due to permanence (unlike CPU cycles)
• �Microservices multiply the overhead cost
• �One monolith application becomes N microservices (e.g.,

20 microservices ≈ 20GB)

This significantly impacts serverless function develop-
ment and the Java deployment model. This is because
many enterprise developers chose alternatives such as
Go, Python, and Nodejs to overcome the performance
bottleneck—until now, thanks to Quarkus [2], a new Ku-
bernetes-native Java stack. This article explains how to
optimize Java performance to run serverless functions on
Kubernetes using Quarkus.

Container-first design
Traditional frameworks in the Java ecosystem come at a
cost in terms of the memory and startup time required to ini-
tialize those frameworks, including configuration processing,
classpath scanning, class loading, annotation processing,
and building a metamodel of the world, which the framework
requires to operate. This is multiplied over and over for dif-
ferent frameworks.

Quarkus helps fix these Java performance issues by "shift-
ing left" almost all of the overhead to the build phase. By do-
ing code and framework analysis, bytecode transformation,
and dynamic metamodel generation only once, at build time,
you end up with a highly optimized runtime executable that
starts up super fast and doesn't require all the memory of
a traditional startup because the work is done once, in the
build phase.

(Daniel Oh, CC BY-SA 4.0)

More importantly, Quarkus allows you to build a native ex-
ecutable file that provides performance advantages [3],
including amazingly fast boot time and incredibly small
resident set size (RSS) memory, for instant scale-up and
high-density memory utilization compared to the traditional
cloud-native Java stack.

(Daniel Oh, CC BY-SA 4.0)

Here is a quick example of how you can build the native
executable with a Java serverless [4] function project using
Quarkus.

1. Create the Quarkus serverless Maven project
This command generates a Quarkus project (e.g.,
quarkus-serverless-native) to create a simple function:

$ mvn io.quarkus:quarkus-maven-plugin:2.0.3.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=quarkus-serverless-native \

 -DclassName="org.acme.getting.started.GreetingResource"

2. Build a native executable
You need a GraalVM to build a native executable for the
Java application. You can choose any GraalVM distribution,
such as Oracle GraalVM Community Edition (CE) [5] and
Mandrel [6] (the downstream distribution of Oracle GraalVM
CE). Mandrel is designed to support building Quarkus-native
executables on OpenJDK 11.

Open pom.xml, and you will find this native profile. You'll
use it to build a native executable:

Make your app run faster
with GraalVM in Kubernetes
Achieve faster startup and a smaller memory footprint to run serverless functions on Kubernetes.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/6/reasons-kubernetes
https://quarkus.io/
https://creativecommons.org/licenses/by-sa/4.0/
https://quarkus.io/blog/runtime-performance/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/21/5/what-serverless-java
https://www.graalvm.org/community/
https://github.com/graalvm/mandrel

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 11

. MAKE YOUR APP RUN FASTER WITH GRAALVM IN KUBERNETES

INFO [io.quarkus] (main) Profile prod activated.

INF�O [io.quarkus] (main) Installed features: [cdi, kubernetes,

resteasy]

Supersonic! That's 19 milliseconds to startup. The time might
be different in your environment.

It also has extremely low memory usage, as the Linux ps
utility reports. While the app is running, run this command in
another terminal:

$ ps -o pid,rss,command -p $(pgrep -f runner)

You should see something like:

 PID RSS COMMAND

10246 11360 target/quarkus-serverless-native-1.0.0-SNAPSHOT-runner

This process is using around 11MB of memory (RSS). Pretty
compact!

Note: The RSS and memory usage of any app, including
Quarkus, will vary depending on your specific environment
and will rise as application experiences load.

You can also access the function with a REST API. Then the
output should be Hello RESTEasy:

$ curl localhost:8080/hello
Hello RESTEasy

3. Deploy the functions to Knative service
If you haven't already, create a namespace [9] (e.g.,
quarkus-serverless-native) on OKD (OpenShift Kuberne-
tes Distribution) [10] to deploy this native executable as a
serverless function. Then add a quarkus-openshift exten-
sion for Knative service deployment:

$./mvnw -q quarkus:add-extension -Dextensions="openshift"

Append the following variables in src/main/resources/ap-
plication.properties to configure Knative and Kubernetes
resources:

quarkus.container-image.group=quarkus-serverless-native

qu�arkus.container-image.registry=image-registry.openshift-

image-registry.svc:5000

quarkus.native.container-build=true

quarkus.kubernetes-client.trust-certs=true

quarkus.kubernetes.deployment-target=knative

quarkus.kubernetes.deploy=true

quarkus.openshift.build-strategy=docker

Build the native executable, then deploy it to the OKD
cluster directly:

<profiles>

 <profile>

 <id>native</id>

 <properties>

 <quarkus.package.type>native</quarkus.package.type>

 </properties>

 </profile>

</profiles>

Note: You can install the GraalVM or Mandrel distribu-
tion locally. You can also download the Mandrel con-
tainer image to build it (as I did), so you need to run a
container engine (e.g., Docker) locally.

Assuming you have started your container runtime already,
run one of the following Maven commands.

For Docker [7]:

$./mvnw package -Pnative \

-Dquarkus.native.container-build=true \

-Dquarkus.native.container-runtime=docker

For Podman [8]:

$./mvnw package -Pnative \

-Dquarkus.native.container-build=true \

-Dquarkus.native.container-runtime=podman

The output should end with BUILD SUCCESS.

(Daniel Oh, CC BY-SA 4.0)

Run the native executable directly without Java Virtual
Machine (JVM):

$ target/quarkus-serverless-native-1.0.0-SNAPSHOT-runner

The output will look like:

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

INFO [io.quarkus] (main) quarkus-serverless-native

1.0.0-SNAPSHOT native

(po�wered by Quarkus xx.xx.xx.) Started in 0.019s. Listening on:

http://0.0.0.0:8080

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html
https://docs.okd.io/latest/welcome/index.html
https://www.docker.com/
https://podman.io/
https://creativecommons.org/licenses/by-sa/4.0/

12	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

MAKE YOUR APP RUN FASTER WITH GRAALVM IN KUBERNETES .

What's next?
You can optimize Java serverless functions with GraalVM
distributions to deploy them as serverless functions on Kna-
tive with Kubernetes. Quarkus enables this performance
optimization using simple configurations in normal micros-
ervices.

The next article in this series will guide you on making
portable functions across multiple serverless platforms with
no code changes.

Links
[1]	 https://opensource.com/article/19/6/reasons-kubernetes
[2]	� https://quarkus.io/
[3]	� https://quarkus.io/blog/runtime-performance/
[4]	� https://opensource.com/article/21/5/what-serverless-java
[5]	 �https://www.graalvm.org/community/
[6]	 �https://github.com/graalvm/mandrel
[7]	 https://www.docker.com/
[8]	 https://podman.io/
[9]	� https://docs.okd.io/latest/applications/projects/configuring-

project-creation.html
[10]	 https://docs.okd.io/latest/welcome/index.html

$./mvnw clean package -Pnative

Note: Make sure to log in to the right project (e.g., quarkus-serverless-native) using the oc login command ahead of time.

The output should end with BUILD SUCCESS. It will take a few minutes to complete a native binary build and deploy a new
Knative service. After successfully creating the service, you should see a Knative service (KSVC) and revision (REV) using
either the kubectl or oc command tool:

$ kubectl get ksvc

NAME URL [...]

quarkus-serverless-native �http://quarkus-serverless-native-[...].SUBDOMAIN True

$ kubectl get rev

NAME CONFIG NAME K8S SERVICE NAME GENERATION READY REASON

quarkus-serverless-native-00001 quarkus-serverless-native quarkus-serverless-native-00001 1 True

4. Access the native executable function
Retrieve the serverless function's endpoint by running this kubectl command:

$ kubectl get rt/quarkus-serverless-native

The output should look like:

NAME URL READY REASON

quarkus-serverless-native http://quarkus-serverless-restapi-quarkus-serverless-native.SUBDOMAIN True

Access the route URL with a curl command:

$ �curl http://quarkus-serverless-restapi-quarkus-serverless-

native.SUBDOMAIN/hello

In less than one second, you will get the same result as you
got locally:

Hello RESTEasy

When you access the Quarkus running pod's logs in the
OKD cluster, you will see the native executable is running as
the Knative service.

(Daniel Oh, CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/6/reasons-kubernetes
https://quarkus.io/
https://quarkus.io/blog/runtime-performance/
https://opensource.com/article/21/5/what-serverless-java
https://www.graalvm.org/community/
https://github.com/graalvm/mandrel
https://www.docker.com/
https://podman.io/
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html
https://docs.okd.io/latest/applications/projects/configuring-project-creation.html
https://docs.okd.io/latest/welcome/index.html
https://creativecommons.org/licenses/by-sa/4.0/

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 13

. MAKING PORTABLE FUNCTIONS ACROSS SERVERLESS PLATFORMS

THE RISING POPULARITY of serverless devel-
opment alongside the increased

adoption of multi- and hybrid-cloud architectures has created
a lot of competition among platforms. This gives developers
many choices about where they can run functions on server-
less platforms—from public managed services to on-premis-
es Kubernetes [1].

If you've read my previous articles about Java server-
less [2], you learned how to get started developing Java
serverless functions [3] with Quarkus and how those
serverless functions can be optimized [4] to run on Kuber-
netes. So what should you do next to make your server-
less functions fit better with the many choices available
to you?

As a clue, think about why the Linux container (Dock-
er, LXC [5], cri-o) has become so popular: Portability. It's
what made containers the de facto packaging technolo-
gy for moving things from a developer's local machine to
Kubernetes environments at scale. It means developers
and operators don't need to worry about incompatibility
and inconsistency between development and production
environments.

For adopting multi- and hybrid cloud architectures, these
container portability benefits should also be considered for
serverless function development. Without portability, de-
velopers would likely have to learn and use different APIs,
command-line interface (CLI) tools, and software develop-
ment kits (SDKs) for each serverless platform when devel-
oping and deploying the same serverless functions across
multiple serverless runtimes. Developers, who have limited
resources (e.g., time, effort, cost, and human resources),
would be so overwhelmed by the options that they would
find it difficult to choose the best one.

(Daniel Oh, CC BY-SA 4.0)

Get Funqy the next time you hit a serverless
dance floor
The Quarkus Funqy [6] extension supports a portable Java
API for developers to write serverless functions and deploy
them to heterogeneous serverless runtimes, including AWS
Lambda, Azure Functions, Google Cloud, and Knative. It is
also usable as a standalone service. Funqy helps developers
dance on the serverless floor without making code changes.

Here is a quick example of how to build a portable server-
less function with Quarkus Funqy.

1. Create a Quarkus Funqy Maven project
Generate a Quarkus project (quarkus-serverless-func) to
create a simple function with Funqy extensions:

$ mvn io.quarkus:quarkus-maven-plugin:2.0.3.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=quarkus-serverless-func \

 -Dextensions="funqy-http" \

 -DclassName="org.acme.getting.started.GreetingResource"

2. Run the serverless function locally
Open the Funqy.java file in the src/main/java/org/acme/
getting/started directory:

Making portable functions
across serverless platforms
Quarkus Funqy brings portability to serverless functions.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/6/reasons-kubernetes
https://opensource.com/article/21/5/what-serverless-java
https://opensource.com/article/21/6/java-serverless-functions
https://opensource.com/article/21/6/java-serverless-functions-kubernetes
https://www.redhat.com/sysadmin/exploring-containers-lxc
https://creativecommons.org/licenses/by-sa/4.0/
https://quarkus.io/guides/funqy

14	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

The output should be:

 Wrong answer

If you pass value=c down as a parameter, you will see:

You Quark!

3. Choose a serverless platform to deploy the
Funqy function
Now you can deploy the portable function to your preferred
serverless platform when you add one of the Quarkus Funqy
extensions in the figure below. The advantage is that you will
not need to change the code; you should need only to ad-
just a few configurations, such as function export and target
serverless platform.

(Daniel Oh, CC BY-SA 4.0)

Try to deploy the function using Knative Serving [7] (if you
have installed it in your Kubernetes cluster). Add the fol-
lowing extensions to the Quarkus Funqy project:

$ �./mvnw quarkus:add-extension -Dextensions=

"kubernetes,container-image-docker"

Open the application.properties file in the src/main/
resources/ directory. Then add the following variables to
configure Knative and Kubernetes resources—make sure
to replace changeit with your container registry's group
name (username in DockerHub):

quarkus.container-image.build=true

quarkus.container-image.group=changeit

quarkus.container-image.push=true

quarkus.container-image.builder=docker

quarkus.kubernetes.deployment-target=knative

Containerize the function, then push it to the external con-
tainer registry:

$./mvnw clean package

public class Funqy {

 private static final String CHARM_QUARK_SYMBOL = "c";

 @Funq (1)

 public String charm(Answer answer) { (2)

 re�turn CHARM_QUARK_SYMBOL.equalsIgnoreCase(answer.

value) ? "You Quark!" : " Wrong answer";

 }

 public static class Answer {

 public String value; (3)

 }

}

In the code above:

(1) �Annotation makes the method an exposable function
based on the Funqy API. The function name is equivalent
to the method name (charm) by default.

(2) �Indicates a Java class (Answer) as an input parameter
and String type for the output.

(3) �value should be parameterized when the function is
invoked.

Note: Funqy does type introspection at build time to
speed boot time, so the Funqy marshaling layer won't
notice any derived types at runtime.

Run the function via Quarkus Dev Mode:

$./mvnw quarkus:dev

The output should look like:

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

IN�FO [io.quarkus] (Quarkus Main Thread) quarkus-serverless-

func 1.0.0-SNAPSHOT on JVM (powered by Quarkus x.x.x.)

started in 2.908s. Listening on: http://localhost:8080

IN�FO [io.quarkus] (Quarkus Main Thread) Profile dev activated.

Live Coding activated.

IN�FO [io.quarkus] (Quarkus Main Thread) Installed features:

[cdi, funqy-http, kubernetes]

Now the function is running in your local development envi-
ronment. Access the function with a RESTful API:

$ http://localhost:8080/charm?value=s

MAKING PORTABLE FUNCTIONS ACROSS SERVERLESS PLATFORMS .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://knative.dev/docs/serving/

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 15

Note: The function will scale down to zero in 30 sec-
onds because of Knative Serving's default behavior. In
this case, the pod will scale up automatically when the
REST API is invoked.

What's next?
You've learned how developers can make portable Java
serverless functions with Quarkus and deploy them
across serverless platforms (e.g., Knative with Kuberne-
tes). Quarkus enables developers to avoid redundancy
when creating the same function and deploying it to multi-
ple serverless platforms. My next article in this series will
explain how to enable CloudEvents Bind with Java and
Knative.

Links
[1]	� https://opensource.com/article/19/6/reasons-kubernetes
[2]	 �https://opensource.com/article/21/5/what-serverless-java
[3]	 �https://opensource.com/article/21/6/java-serverless-

functions
[4]	� https://opensource.com/article/21/6/java-serverless-

functions-kubernetes
[5]	 �https://www.redhat.com/sysadmin/exploring-containers-lxc
[6]	 �https://quarkus.io/guides/funqy
[7]	 https://knative.dev/docs/serving/

The output should end with BUILD SUCCESS. Then a knative.
yml file will be generated in the target/kubernetes direc-
tory. Now you should be ready to create a Knative service
with the function using the following command (be sure
to log into the Kubernetes cluster and change the name-
space where you want to create the Knative service):

$ kubectl create -f target/kubernetes/knative.yml

The output should be like this:

service.serving.knative.dev/quarkus-serverless-func created

4. Test the Funqy function in Kubernetes
Get the function's REST API and note its output:

$ kubectl get rt

NAME URL READY REASON

qu�arkus-serverless-func

http://quarkus-serverless-func-YOUR_HOST_DOMAIN True

Access the function quickly using a curl command:

$ �http://http://quarkus-serverless-func-YOUR_HOST_DOMAIN/

charm?value=c

You see the same output as you saw locally:

You Quark!

. MAKING PORTABLE FUNCTIONS ACROSS SERVERLESS PLATFORMS

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/6/reasons-kubernetes
https://opensource.com/article/21/5/what-serverless-java
https://opensource.com/article/21/6/java-serverless-functions
https://opensource.com/article/21/6/java-serverless-functions
https://opensource.com/article/21/6/java-serverless-functions-kubernetes
https://opensource.com/article/21/6/java-serverless-functions-kubernetes
https://www.redhat.com/sysadmin/exploring-containers-lxc
https://quarkus.io/guides/funqy
https://knative.dev/docs/serving/

16	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

BIND A CLOUD EVENT TO KNATIVE .

EVENTS HAVE BECOME an essential piece of modern
reactive systems. Indeed, events can be

used to communicate from one service to another, trigger
out-of-band processing, or send a payload to a service like
Kafka. The problem is that event publishers may express
event messages in any number of different ways, regard-
less of content. For example, some messages are payloads
in JSON format to serialize and deserialize messages by
application. Other applications use binary formats such as
Avro [1] and Protobuf [2] to transport payloads with meta-
data. This is an issue when building an event-driven archi-
tecture that aims to easily integrate external systems and
reduce the complexity of message transmission.

CloudEvents [3] is an open specification providing a com-
mon format to describe events and increase interoperabili-
ty. Many cloud providers and middleware stacks, including
Knative [4], Kogito [5], Debezium [6], and Quarkus [7] have
adopted this format after the release of CloudEvents 1.0.
Furthermore, developers need to decouple relationships be-
tween event producers and consumers in serverless archi-
tectures. Knative Eventing [8] is consistent with the CloudE-
vents specification, providing common formats for creating,
parsing, sending, and receiving events in any programming
language. Knative Eventing also enables developers to late-
bind event sources and event consumers. For example, a
cloud event using JSON might look like this:

{

 "specversion" : "1.0", (1)

 "id" : "11111", (2)

 "source" : "http://localhost:8080/cloudevents", (3)

 "type" : "knative-events-binding", (4)

 "subject" : "cloudevents", (5)

 "time" : "2021-06-04T16:00:00Z", (6)

 "datacontenttype" : "application/json", (7)

 "data" : "{\"message\": \"Knative Events\"}", (8)

}

In the above code:
(1) �Which version of the CloudEvents specification to use
(2) �The ID field for a specific event; combining the id and the

source provides a unique identifier
(3) �The Uniform Resource Identifier (URI) identifies the event

source in terms of the context where it happened or the
application that emitted it

(4) �The type of event with any random words
(5) �Additional details about the event (optional)
(6) �The event creation time (optional)

(7) �The content type of the data attribute (optional)
(8) �The business data for the specific event

Here is a quick example of how developers can enable
a CloudEvents bind with Knative and the Quarkus Funqy
extension [9].

1. Create a Quarkus Knative event Maven project
Generate a Quarkus project (e.g., quarkus-server-
less-cloudevent) to create a simple function with Funqy
Knative events binding extensions:

$ mvn io.quarkus:quarkus-maven-plugin:2.0.3.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=quarkus-serverless-cloudevent \

 -Dextensions="funqy-knative-events" \

 -DclassName="org.acme.getting.started.GreetingResource"

2. Run the serverless event function locally
Open the CloudEventGreeting.java file in the src/main/
java/org/acme/getting/started/funqy/cloudevent direc-
tory. The @funq annotation enables the myCloudEventGreet-
ing method to map the input data to the cloud event mes-
sage automatically:

pr�ivate static final Logger log =

Logger.getLogger(CloudEventGreeting.class);

 @Funq

 public void myCloudEventGreeting(Person input) {

 log.info("Hello " + input.getName());

 }

}

Run the function via Quarkus Dev Mode:

$./mvnw quarkus:dev

The output should look like this:

__ ____ __ _____ ___ __ ____ ______

 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/

 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \

--________/_/ |_/_/|_/_/|_|____/___/

IN�FO [io.quarkus] (Quarkus Main Thread) quarkus-serverless-

cloudevent 1.0.0-SNAPSHOT on JVM (powered by Quarkus 2.0.0.CR3)

started in 1.546s. Listening on: http://localhost:8080

IN�FO [io.quarkus] (Quarkus Main Thread) Profile dev activated.

Bind a cloud event to Knative
CloudEvents provides a common format to describe events and increase interoperability.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://avro.apache.org/
https://developers.google.com/protocol-buffers
https://cloudevents.io/
https://knative.dev/
https://kogito.kie.org/
https://debezium.io/
https://quarkus.io/
https://knative.dev/docs/eventing/
https://opensource.com/article/21/6/quarkus-funqy

A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM	 17

Run the following command to containerize the function and
then push it to the Docker Hub container registry automatically:

$./mvnw clean package

The output should end with BUILD SUCCESS.
Open the funqy-service.yaml file in the src/main/k8s

directory. Then replace yourAccountName with your account
information in the Docker Hub registry:

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: funqy-knative-events-codestart

spec:

 template:

 metadata:

 name: funqy-knative-events-codestart-v1

 annotations:

 autoscaling.knative.dev/target: "1"

 spec:

 containers:

 - image: �docker.io/yourAccountName/funqy-knative-

events-codestart

Assuming the container image pushed successfully, create
the Knative service based on the event function using the
following kubectl command-line tool (be sure to log into the
Kubernetes cluster and change the namespace where you
want to create the Knative service):

$ kubectl create -f src/main/k8s/funqy-service.yaml

The output should look like this:

se�rvice.serving.knative.dev/funqy-knative-events-codestart

created

Create a default broker to subscribe to the event function.
Use the kn [12] Knative Serving command-line tool:

$ kn broker create default

Open the funqy-trigger.yaml file in the src/main/k8s
directory and replace it with:

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: my-cloudevent-greeting

spec:

 broker: default

 subscriber:

 ref:

Live Coding activated.

IN�FO [io.quarkus] (Quarkus Main Thread) Installed features:

[cdi, funqy-knative-events, smallrye-context-propagation]

--

Tests paused, press [r] to resume

Note: Quarkus 2.x provides a continuous testing feature
so that you can keep testing your code when you add or
update code by pressing r in the terminal.

Now the CloudEvents function is running in your local devel-
opment environment. So, send a cloud event to the function
over the HTTP protocol:

curl -v http://localhost:8080 \

 -H "Content-Type:application/json" \

 -H "Ce-Id:1" \

 -H "Ce-Source:cloud-event-example" \

 -H "Ce-Type:myCloudEventGreeting" \

 -H "Ce-Specversion:1.0" \

 -d "{\"name\": \"Daniel\"}"

The output should end with:

HTTP/1.1 204 No Content

Go back to the terminal, and the log should look like this:

IN�FO [org.acm.get.sta.fun.clo.CloudEventGreeting]

(executor-thread-0) Hello Daniel

3. Deploy the serverless event function to Knative
Add a container-image-docker extension to the Quarkus
Funqy project. The extension enables you to build a con-
tainer image based on the serverless event function and
then push it to an external container registry (e.g., Docker
Hub [10], Quay.io [11]):

$./�mvnw quarkus:add-extension -Dextensions="container-image-

docker"

Open the application.properties file in the src/main/
resources/ directory. Then add the following variables to
configure Knative and Kubernetes resources (make sure to
replace yourAccountName with your container registry's ac-
count name, e.g., your username in Docker Hub):

quarkus.container-image.build=true

quarkus.container-image.push=true

quarkus.container-image.builder=docker

qu�arkus.container-image.image=docker.io/yourAccountName/funqy-

knative-events-codestart

. BIND A CLOUD EVENT TO KNATIVE

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://knative.dev/docs/client/install-kn/
https://hub.docker.com/
https://quay.io/

18	 A GUIDE TO JAVA SERVERLESS FUNCTIONS ... CC BY-SA 4.0 ... OPENSOURCE.COM

BIND A CLOUD EVENT TO KNATIVE .

IN�FO [org.acm.get.sta.fun.clo.CloudEventGreeting]

(executor-thread-0) Hello Daniel

If you deploy the event function to an OpenShift Kubernetes
Distribution (OKD) [13] cluster, you will find the deployment
status in the topology view:

(Daniel Oh, CC BY-SA 4.0)

You can also find the pod's logs in the Pod details tab:

(Daniel Oh, CC BY-SA 4.0)

What's next?
Developers can bind a cloud event to Knative using Quarkus
functions. Quarkus also scaffolds Kubernetes manifests,
such as Knative services and triggers, to process cloud
events over a channel or HTTP request.

Learn more serverless and Quarkus topics through Open-
Shift's interactive self-service learning portal [14].

Links
[1]	 https://avro.apache.org/
[2]	 �https://developers.google.com/protocol-buffers
[3]	� https://cloudevents.io/
[4]	 �https://knative.dev/
[5]	 �https://kogito.kie.org/
[6]	 �https://debezium.io/
[7]	 https://quarkus.io/
[8]	 https://knative.dev/docs/eventing/
[9]	 https://opensource.com/article/21/6/quarkus-funqy
[10]	 https://hub.docker.com/
[11]	 https://quay.io/
[12]	 https://knative.dev/docs/client/install-kn/
[13]	 https://www.okd.io/
[14]	 https://learn.openshift.com/serverless/

 apiVersion: serving.knative.dev/v1

 kind: Service

 name: funqy-knative-events-codestart

Create a trigger using the kubectl command-line tool:

$ kubectl create -f src/main/k8s/funqy-trigger.yaml

The output should look like this:

trigger.eventing.knative.dev/my-cloudevent-greeting created

4. Send a cloud event to the serverless event
function in Kubernetes
Find out the function's route URL and check that the output
looks like this:

$ kubectl get rt

NAME URL READY REASON

fu�nqy-knative-events-codestart

http://funqy-knative-events-codestart-YOUR_HOST_DOMAIN True

Send a cloud event to the function over the HTTP protocol:

curl -v http://funqy-knative-events-codestart-YOUR_HOST_DOMAIN \

 -H "Content-Type:application/json" \

 -H "Ce-Id:1" \

 -H "Ce-Source:cloud-event-example" \

 -H "Ce-Type:myCloudEventGreeting" \

 -H "Ce-Specversion:1.0" \

 -d "{\"name\": \"Daniel\"}"

The output should end with:

HTTP/1.1 204 No Content

Once the function pod scales up, take a look at the pod logs.
Use the following kubectl command to retrieve the pod's name:

$ kubectl get pod

The output will look like this:

NAME READY STATUS RESTARTS AGE

funqy-knative-events-codestart- 2/2 Running 0 11s

 v1-deployment-6569f6dfc-zxsqs

Run the following kubectl command to verify that the pod's
logs match the local testing's result:

$ �kubectl logs funqy-knative-events-codestart-v1-deployment-

6569f6dfc-zxsqs -c user-container | grep CloudEventGreeting

The output looks like this:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.okd.io/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://learn.openshift.com/serverless/
https://avro.apache.org/
https://developers.google.com/protocol-buffers
https://cloudevents.io/
https://knative.dev/
https://kogito.kie.org/
https://debezium.io/
https://quarkus.io/
https://knative.dev/docs/eventing/
https://opensource.com/article/21/6/quarkus-funqy
https://hub.docker.com/
https://quay.io/
https://knative.dev/docs/client/install-kn/
https://www.okd.io/
https://learn.openshift.com/serverless/

