
A guide to building 
a video game in Python

Opensource.com

http://www.opensource.com


OPENSOURCE.COM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating, 
adopting, and sharing open source 

solutions. Visit Opensource.com to learn more about how the open source 
way is improving technologies, education, business, government, health, law, 
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ABOUT THE AUTHORS

SETH KENLON is an independent multimedia artist, free culture 
advocate, and UNIX geek. He has worked in the film 

and computing industry, often at the same 
time. He is one of the maintainers of the 
Slackware-based multimedia production 
project, http://slackermedia.info.

SETH KENLON

JESS WEICHLER

JESS WEICHLER Jess Weichler is a digital artist using open 
source software and hardware to create 

works digitally and in the physical world at CyanideCupcake.com.

She is also an award-winning educator 
for (and founder of) MakerBox.org.nz 
an organization that teaches kids of 
all ages how to use technology, from 
sewing needles to Arduinos, to make 
their ideas a reality.

Follow Jess at @jlweich

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.imdb.com/name/nm1244992
http://people.redhat.com/skenlon
http://slackermedia.info
http://cyanidecupcake.com/
http://makerbox.org.nz/
https://twitter.com/jlweich


CONTENTS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

4 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

CHAPTERS

APPENDICES

Learn how to program in Python by building a simple 5 
dice game 

Build a game framework with Python using the  10 
Pygame module

How to add a player to your Python game 15

Using Pygame to move your game character around 19

What’s a hero without a villain? How to add one to your 24  
Python game

Put platforms in a Python game with Pygame 29

Simulate gravity in your Python game 37

Add jumping to your Python platformer game 41

Enable your Python game player to run forward  47 
and backward

Put some loot in your Python platformer game 52

Add scorekeeping to your Python game 57

Add throwing mechanics to your Python game 65

Add sound to your Python game 72

How to install Python on Windows 74

Managing Python packages the right way 77

Easily set image transparency using GIMP 80

The code for this booklet can be found here:
https://gitlab.com/makerbox/scratch2python

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://gitlab.com/makerbox/scratch2python


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 5

. . . . . . . . . . . . . . . . . . . .  LEARN HOW TO PROGRAM IN PYTHON BY BUILDING A SIMPLE DICE GAME

PYTHON [1] is an all-purpose programming lan-
guage that can be used to create desktop 

applications, 3D graphics, video games, and even websites. 
It’s a great first programming language because it can be 
easy to learn and it’s simpler than complex languages like 
C, C++, or Java. Even so, Python is powerful and robust 
enough to create advanced applications, and it’s used in just 
about every industry that uses computers. This makes Py-
thon a good language for young and old, with or without any 
programming experience.

Installing Python
Before learning Python, you may need to install it.

Linux: If you use Linux, Python is already included, 
but make sure that you have Python 3 specifically. To 
check which version is installed, open a terminal window 
and type:

python --version

Should that reveal that you have version 2 installed, or no 
version at all, try specifying Python 3 instead:

python3 --version

If that command is not found, then you must install Python 3 
from your package manager or software center. Which pack-
age manager your Linux distribution uses depends on the 
distribution. The most common are dnf on Fedora and apt 
on Ubuntu. For instance, on Fedora, you type this:

sudo dnf install python3

MacOS: If you’re on a Mac, follow the instructions for Li-
nux to see if you have Python 3 installed. MacOS does not 
have a built-in package manager, so if Python 3 is not found, 
install it from python.org/downloads/mac-osx [2]. Although 
your version of macOS may already have Python 2 installed, 
you should learn Python 3.

Windows: Microsoft Windows doesn’t currently ship with 
Python. Install it from python.org/downloads/windows [3]. Be 
sure to select Add Python to PATH in the install wizard. 
Read my article How to Install Python on Windows [4] for 
instructions specific to Microsoft Windows.

Running an IDE
To write programs in Python, all you really need is a text editor, 
but it’s convenient to have an integrated development environ-
ment (IDE). An IDE integrates a text editor with some friendly 
and helpful Python features. IDLE 3 and PyCharm (Communi-
ty Edition) are two options among many [5] to consider.

IDLE 3
Python comes with a basic IDE called IDLE.

IDLE

Learn how to program in Python 
by building a simple dice game
Python is a good language for young and old, with or without any programming experience.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.python.org/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/windows
https://opensource.com/article/19/8/how-install-python-windows
https://opensource.com/resources/python/ides


6 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

LEARN HOW TO PROGRAM IN PYTHON BY BUILDING A SIMPLE DICE GAME  . . . . . . . . . . . . . . . . . . .

opensource.com
The keyword print tells Python to print out whatever text you 
give it in parentheses and quotes.

That’s not very exciting, though. At its core, Python has 
access to only basic keywords, like print, help, basic math 
functions, and so on.

You can use the import keyword to load more keywords.
Turtle is a fun module to use. Type this code into your file 

(replacing the old code), and then run it:

import turtle

turtle.begin_fill()

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.end_fill()

See what shapes you can draw with the turtle module.
To clear your turtle drawing area, use the turtle.clear() 

keyword. What do you think the keyword turtle.color("blue") 
does?

Advanced turtle
You can try some more complex code for similar results. In-
stead of hand-coding every line and every turn, you can use 
a while loop, telling Python to do this four times: draw a 
line and then turn. Python is able to keep track of how many 
times it’s performed these actions with a variable called 
counter. You’ll learn more about variables soon, but for now 
see if you can tell how the counter and while loop interact.

import turtle as t

import time

It has keyword highlighting to help detect typing errors, hints 
for code completion, and a Run button to test code quickly 
and easily. To use it:

•   On Linux or macOS, launch a terminal window and type 
idle3.

•   On Windows, launch Python 3 from the Start menu.
 •   If you don’t see Python in the Start menu, launch the 

Windows command prompt by typing cmd in the Start 
menu, and type C:\Windows\py.exe.

 •   If that doesn’t work, try reinstalling Python. Be sure to 
select Add Python to PATH in the install wizard. Refer 
to docs.python.org/3/using/windows.html [6] for detailed 
instructions.

 •   If that still doesn’t work, just use Linux. It’s free and, 
as long as you save your Python files to a USB thumb 
drive, you don’t even have to install it to use it.

PyCharm Community Edition
PyCharm (Community Edition) IDE [7] is an excellent 
open source Python IDE. It has keyword highlighting to 
help detect typos, quotation and parenthesis completion 
to avoid syntax errors, line numbers (helpful when debug-
ging), indentation markers, and a Run button to test code 
quickly and easily.

To use it:

1.   Install PyCharm (Community Edition) IDE. On Linux, it’s 
easiest to install it with Flatpak [8]. Alternatively, down-
load [9] the correct installer version from PyCharm’s 
website and install it manually [10]. On MacOS or Win-
dows, download and run the installer from the PyCharm 
website [11].

2.   Launch PyCharm.
3.  Create a new project.

Telling Python what to do
Keywords tell Python what you want it to do. In your new 
project file, type this into your IDE:

print("Hello world.")

•   If you are using IDLE, go to the Run menu and select Run 
module option.

•   If you are using PyCharm, click the Run File button in the 
left button bar.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.python.org/3/using/windows.html
https://www.jetbrains.com/pycharm/download
https://flathub.org/apps/details/com.jetbrains.PyCharm-Community
https://www.jetbrains.com/pycharm/download/#section=linux
https://opensource.com/article/18/1/how-install-apps-linux
https://www.jetbrains.com/pycharm/download


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 7

. . . . . . . . . . . . . . . . . . . .  LEARN HOW TO PROGRAM IN PYTHON BY BUILDING A SIMPLE DICE GAME

t.color("blue")

t.begin_fill()

counter=0

while counter < 4:

    t.forward(100)

    t.left(90)

    counter = counter+1

t.end_fill()

time.sleep(2)

Once you have run your script, it’s time to explore an even 
better module.

Learning Python by making a game
To learn more about how Python works and prepare for more 
advanced programming with graphics, let’s focus on game 
logic. In this tutorial, we’ll also learn a bit about how comput-
er programs are structured by making a text-based game in 
which the computer and the player roll a virtual die, and the 
one with the highest roll wins.

Planning your game
Before writing code, it’s important to think about what 
you intend to write. Many programmers write simple doc-
umentation [12] before they begin writing code, so they 
have a goal to program toward. Here’s how the dice pro-
gram might look if you shipped documentation along with 
the game:

1.   Start the dice game and press Return or Enter to roll.
2.  The results are printed out to your screen.
3.  You are prompted to roll again or to quit.

It’s a simple game, but the documentation tells you a lot 
about what you need to do. For example, it tells you that you 
need the following components to write this game:

•   Player: You need a human to play the game.
•   AI: The computer must roll a die, too, or else the player has 

no one to win or lose to.
•   Random number: A common six-sided die renders a ran-

dom number between 1 and 6.
•   Operator: Simple math can compare one number to anoth-

er to see which is higher.
•   A win or lose message.
•   A prompt to play again or quit.

Making dice game alpha
Few programs start with all of their features, so the first 
version will only implement the basics. First a couple of 
definitions:

A variable is a value that is subject to change, and they 
are used a lot in Python. Whenever you need your program 
to “remember” something, you use a variable. In fact, al-
most all the information that code works with is stored in 
variables. For example, in the math equation x + 5 = 20, 
the variable is x, because the letter x is a placeholder for 
a value.

An integer is a number; it can be positive or negative. 
For example, 1 and -1 are both integers. So are 14, 21, and 
even 10,947.

Variables in Python are easy to create and easy to work 
with. This initial version of the dice game uses two variables: 
player and ai.

Type the following code into a new project called dice_
alpha:

import random

player = random.randint(1,6)

ai = random.randint(1,6)

if player > ai :

    print("You win")  # notice indentation

else:

    print("You lose")

Launch your game to make sure it works.
This basic version of your dice game works pretty well. It 

accomplishes the basic goals of the game, but it doesn’t feel 
much like a game. The player never knows what they rolled 
or what the computer rolled, and the game ends even if the 
player would like to play again.

This is common in the first version of software (called an 
alpha version). Now that you are confident that you can ac-
complish the main part (rolling a die), it’s time to add to the 
program.

Improving the game
In this second version (called a beta) of your game, a few 
improvements will make it feel more like a game.

1. Describe the results
Instead of just telling players whether they did or didn’t win, 
it’s more interesting if they know what they rolled. Try making 
these changes to your code:

player = random.randint(1,6)

print("You rolled " + player)

ai = random.randint(1,6)

print("The computer rolled " + ai)

If you run the game now, it will crash because Python thinks 
you’re trying to do math. It thinks you’re trying to add the 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/8/doc-driven-development


8 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

LEARN HOW TO PROGRAM IN PYTHON BY BUILDING A SIMPLE DICE GAME  . . . . . . . . . . . . . . . . . . .

Modify your code like this:

if player > ai :

    print("You win")  # notice indentation

elif player == ai:

    print("Tie game.")

else:

    print("You lose")

Launch your game a few times to try to tie the computer’s 
roll.

Programming the final release
The beta release of your dice game is functional and feels 
more like a game than the alpha. For the final release, create 
your first Python function.

A function is a collection of code that you can call upon as 
a distinct unit. Functions are important because most appli-
cations have a lot of code in them, but not all of that code 
has to run at once. Functions make it possible to start an 
application and control what happens and when.

Change your code to this:

import random

import time

def dice():

    player = random.randint(1,6)

    print("You rolled " + str(player) )

    ai = random.randint(1,6)

    print("The computer rolls...." )

    time.sleep(2)

    print("The computer has rolled a " + str(ai) )

    if player > ai :

        print("You win")  # notice indentation

    else:

        print("You lose")

    print("Quit? Y/N")

    continue = input()

    if continue == "Y" or continue == "y":

        exit()

    elif continue == "N" or continue == "n":

        pass

    else:

        print("I did not understand that. Playing again.")

This version of the game asks the player whether they want 
to quit the game after they play. If they respond with a Y or y, 
Python’s exit function is called and the game quits.

letters “You rolled” and whatever number is currently stored 
in the player variable.

You must tell Python to treat the numbers in the player and 
ai variables as if they were a word in a sentence (a string) 
rather than a number in a math equation (an integer).

Make these changes to your code:

player = random.randint(1,6)

print("You rolled " + str(player) )

ai = random.randint(1,6)

print("The computer rolled " + str(ai) )

Run your game now to see the result.

2. Slow it down
Computers are fast. Humans sometimes can be fast, but 
in games, it’s often better to build suspense. You can use 
Python’s time function to slow your game down during the 
suspenseful parts.

import random

import time

player = random.randint(1,6)

print("You rolled " + str(player) )

ai = random.randint(1,6)

print("The computer rolls...." )

time.sleep(2)

print("The computer has rolled a " + str(player) )

if player > ai :

    print("You win")  # notice indentation

else:

    print("You lose")

Launch your game to test your changes.

3. Detect ties
If you play your game enough, you’ll discover that even 
though your game appears to be working correctly, it actual-
ly has a bug in it: It doesn’t know what to do when the player 
and the computer roll the same number.

To check whether a value is equal to another value, Py-
thon uses ==. That’s two equal signs, not just one. If you 
use only one, Python thinks you’re trying to create a new 
variable, but you’re actually trying to do math.

When you want to have more than just two options (i.e., 
win or lose), you can using Python’s keyword elif, which 
means else if. This allows your code to check to see whether 
any one of some results are true, rather than just checking 
whether one thing is true.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 9

. . . . . . . . . . . . . . . . . . . .  LEARN HOW TO PROGRAM IN PYTHON BY BUILDING A SIMPLE DICE GAME

stays open long enough for the computer user to use func-
tions within the application.

Next steps
Now you know the basics of Python programming. The next 
article in this series describes how to write a video game with 
PyGame [13], a module that has more features than turtle, 
but is also a lot more complex.

Links
[1]  https://www.python.org/
[2]  https://www.python.org/downloads/mac-osx/
[3] https://www.python.org/downloads/windows
[4]  https://opensource.com/article/19/8/how-install-python-

windows
[5]  https://opensource.com/resources/python/ides
[6]  https://docs.python.org/3/using/windows.html
[7]  https://www.jetbrains.com/pycharm/download
[8]  https://flathub.org/apps/details/com.jetbrains.PyCharm-

Community
[9]  https://www.jetbrains.com/pycharm/

download/#section=linux
[10]  https://opensource.com/article/18/1/how-install-apps-linux
[11]  https://www.jetbrains.com/pycharm/download
[12]  https://opensource.com/article/17/8/doc-driven-

development
[13]  https://www.pygame.org/news

More importantly, you’ve created your own function called 
dice. The dice function doesn’t run right away. In fact, if you 
try your game at this stage, it won’t crash, but it doesn’t ex-
actly run, either. To make the dice function actually do some-
thing, you have to call it in your code.

Add this loop to the bottom of your existing code. The first 
two lines are only for context and to emphasize what gets in-
dented and what does not. Pay close attention to indentation.

    else:

        print("I did not understand that. Playing again.")

# main loop

while True:

    print("Press return to roll your die.")

    roll = input()

    dice()

The while True code block runs first. Because True is al-
ways true by definition, this code block always runs until Py-
thon tells it to quit.

The while True code block is a loop. It first prompts the 
user to start the game, then it calls your dice function. That’s 
how the game starts. When the dice function is over, your 
loop either runs again or it exits, depending on how the play-
er answered the prompt.

Using a loop to run a program is the most common way 
to code an application. The loop ensures that the application 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/news
https://www.python.org/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/windows
https://opensource.com/article/19/8/how-install-python-windows
https://opensource.com/article/19/8/how-install-python-windows
https://opensource.com/resources/python/ides
https://docs.python.org/3/using/windows.html
https://www.jetbrains.com/pycharm/download
https://flathub.org/apps/details/com.jetbrains.PyCharm-Community
https://flathub.org/apps/details/com.jetbrains.PyCharm-Community
https://www.jetbrains.com/pycharm/download/#section=linux
https://www.jetbrains.com/pycharm/download/#section=linux
https://opensource.com/article/18/1/how-install-apps-linux
https://www.jetbrains.com/pycharm/download
https://opensource.com/article/17/8/doc-driven-development
https://opensource.com/article/17/8/doc-driven-development
https://www.pygame.org/news


10 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

BUILD A GAME FRAMEWORK WITH PYTHON USING THE PYGAME MODULE  . . . . . . . . . . . . . . . . . . .

IN MY FIRST ARTICLE in this series, I explained 
how to use Python to create a sim-

ple, text-based dice game. You also used the Turtle module to 
generate some simple graphics. In this article, you start using 
a module called Pygame to create a game with graphics.

The Turtle module is included with Python by default. Any-
one who’s got Python installed also has Turtle. The same is 
not true for an advanced module like Pygame. Because it’s 
a specialized code library, you must install Pygame yourself. 
Modern Python development uses the concept of virtual en-
vironments, which provides your Python code its own space 
to run in, and also helps manage which code libraries your 
application uses. This ensures that when you pass your Py-
thon application to another user to play, you know exactly 
what they need to install to make it work.

You can manage your Python virtual environment man-
ually, or you can let your IDE help you. For now, you can 
let PyCharm do all the work. If you’re not using PyCharm, 
read László Kiss Kollár’s article about managing Python 
packages [1].

Getting started with Pygame
Pygame is a library, or Python module. It’s a collection of 
common code that prevents you from having to reinvent the 
wheel with every new game you write. You’ve already used 
the Turtle module, and you can imagine how complex that 
could have been if you’d had to write the code to create a 
pen before drawing with it. Pygame offers similar advantag-
es, but for video games.

A video game needs a setting, a world in which it takes 
place. In Pygame, there are two different ways to create your 
setting:

•  Set a background color
•  Set a background image

Either way, your background is only an image or a color. Your 
video game characters can’t interact with things in the back-

ground, so don’t put anything too important back there. It’s 
just set dressing.

Setting up your first Pygame script
To start a new Python project, you would normally create 
a new folder on your computer and place all your game 
files go into this directory. It’s vitally important that you 
keep all the files needed to run your game inside of your 
project folder.

PyCharm (or whatever IDE you use) can do this for you.
To create a new project in PyCharm, navigate to the File 

menu and select New Project. In the window that appears, 
enter a name for your project (such as game_001.) Notice 
that this project is saved into a special PycharmProjects 
folder in your home directory. This ensures that all the files 
your game needs stays in one place.

When creating a new project, let PyCharm create a new 
environment using Virtualenv, and accept all defaults. En-
able the option to create a main.py file (and to set up some 
important defaults.)

opensource.com
After you’ve clicked the Create button, a new project ap-
pears in your PyCharm window. The project consists of a vir-
tual environment (the venv directory listed in the left column) 
and a demo file called main.py.

Build a game framework with 
Python using the Pygame module
The first part of this series explored Python by creating a simple dice game. Now it’s time to make 
your own game from scratch.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/4/managing-python-packages
http://opensource.com 


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 11

. . . . . . . . . . . . . . . . . . . .  BUILD A GAME FRAMEWORK WITH PYTHON USING THE PYGAME MODULE

ments that Python ignores, but they’re good placeholders 
for you as you follow along with these lessons. I still use 
placeholders when I code, because it helps me organize 
and plan.

'''

Variables

'''

# put variables here

'''

Objects

'''

# put Python classes and functions here

'''

Setup

'''

# put run-once code here

'''

Main Loop

'''

# put game loop here

Next, set the window size for your game. Keep in mind 
that not everyone has a big computer screen, so it’s 
best to use a screen size that fits on “most” people’s 
computers.

There is a way to toggle full-screen mode, the way many 
modern video games do, but since you’re just starting out, 
keep it simple and just set one size.

'''

Variables

'''

worldx = 960

worldy = 720

The Pygame engine requires some basic setup before you 
can use it in a script. You must set the frame rate, start its 
internal clock, and start (using the keyword init, for initial-
ize) Pygame.

Add these variables:

fps   = 40  # frame rate

ani   = 4   # animation cycles

Delete all the contents of main.py so you can enter your 
own custom code. A Python script starts with the file type, 
your name, and the license you want to use. Use an open 
source license so your friends can improve your game and 
share their changes with you:

#!/usr/bin/env python3

# by Seth Kenlon

## GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be

# useful, but WITHOUT ANY WARRANTY; without even the implied

# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

# PURPOSE. See the GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

Then tell Python what modules you want to use. In this 
code sample, you don’t have to type the # character or 
anything after it on each line. The # character in Python 
represents a comment, notes in code left for yourself and 
other coders.

import pygame  # load pygame keywords

import sys     # let  python use your file system

import os      # help python identify your OS

Notice that PyCharm doesn’t understand what Pygame is, 
and underlines it to mark it as an error. This is because Pyg-
ame, unlike sys and os, isn’t included with Python by default. 
You need to include Pygame in your project directory before 
you can use it successfully in code. To include it, hover your 
mouse over the word pygame until you see a notification 
popup explaining the error.

Click the Install package pygame link in the alert box, 
and wait for PyCharm to install Pygame into your virtual en-
vironment.

Once it’s installed, the error disappears.
Without an IDE like PyCharm, you can install Pygame into 

your virtual environment manually using the pip command.

Code sections
Because you’ll be working a lot with this script file, it helps 
to make sections within the file so you know where to put 
stuff. You do this with block comments, which are com-
ments that are visible only when looking at your source 
code. Create four blocks in your code. These are all com-

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


12 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

BUILD A GAME FRAMEWORK WITH PYTHON USING THE PYGAME MODULE  . . . . . . . . . . . . . . . . . . .

Look out for errors
PyCharm is strict, and that’s pretty typical for programming. 
Syntax is paramount! As you enter your code into PyCharm, 
you see warnings and errors. The warnings are yellow and 
the errors are red.

PyCharm can be over-zealous sometimes, though, so it’s 
usually safe to ignore warnings. You may be violating the 
“Python style”, but these are subtle conventions that you’ll 
learn in time. Your code will still run as expected.

Errors, on the other hand, prevent your code (and some-
times PyCharm) from doing what you expect. For instance, 
PyCharm is very insistent that there’s a newline character 
at the end of the last line of code, so you must press Enter 
or Return on your keyboard at the end of your code. If you 
don’t, PyCharm quietly refuses to run your code.

Running the game
At this point, you could theoretically start your game. The 
problem is, it would only last for a millisecond.

To prove this, save and then run your game.
If you are using IDLE, run your game by selecting Run 

Module from the Run menu.
If you are using PyCharm, click the Run file button in the 

top right toolbar.

opensource.com

You can also run a Python script straight from a Unix terminal 
or a Windows command prompt, as long as you’re in your 
virtual environment.

However you launch it, don’t expect much, because your 
game only lasts a few milliseconds right now. You can fix that 
in the next section.

Looping
Unless told otherwise, a Python script runs once and only 
once. Computers are very fast these days, so your Python 
script runs in less than a second.

To force your game to stay open and active long enough 
for someone to see it (let alone play it), use a while loop. 

Add instructions to start Pygame’s internal clock in the Setup 
section:

'''

Setup

'''

clock = pygame.time.Clock()

pygame.init()

Now you can set your background.

Setting the background
Before you continue, open a graphics application and cre-
ate a background for your game world. Save it as stage.
png inside a folder called images in your project directory. 
If you need a starting point, you can download a set of Cre-
ative Commons [2] backgrounds from kenny.nl [3].

There are several free graphic applications you can use to 
create, resize, or modify graphics for your games.

•   Pinta [4] is a basic, easy to learn paint application.
•   Krita [5] is a professional-level paint materials emulator 

that can be used to create beautiful images. If you’re very 
interested in creating art for video games, you can even 
purchase a series of online game art tutorials [6].

•   Inkscape [7] is a vector graphics application. Use it to draw 
with shapes, lines, splines, and Bézier curves.

Your graphic doesn’t have to be complex, and you can al-
ways go back and change it later. Once you have a back-
ground, add this code in the setup section of your file:

world = pygame.display.set_mode([worldx,worldy])

backdrop = pygame.image.load(os.path.join('images','stage.png'))

backdropbox = world.get_rect()

If you’re just going to fill the background of your game world 
with a color, all you need is:

world = pygame.display.set_mode([worldx, worldy])

You also must define a color to use. In your setup section, 
create some color definitions using values for red, green, 
and blue (RGB).

'''

Variables

'''

BLUE  = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://opensource.com 
https://opensource.com/article/20/1/what-creative-commons
https://kenney.nl/assets/background-elements-redux
https://www.pinta-project.com/
http://krita.org/
https://gumroad.com/l/krita-game-art-tutorial-1
http://inkscape.org/


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 13

. . . . . . . . . . . . . . . . . . . .  BUILD A GAME FRAMEWORK WITH PYTHON USING THE PYGAME MODULE

To make your game remain open, you can set a variable to 
some value, then tell a while loop to keep looping for as 
long as the variable remains unchanged.

This is often called a “main loop,” and you can use the 
term main as your variable. Add this anywhere in your Vari-
ables section:

main = True

During the main loop, use Pygame keywords to detect if 
keys on the keyboard have been pressed or released. Add 
this to your main loop section:

'''

Main loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

Be sure to press Enter or Return after the final line of your 
code so there’s an empty line at the bottom of your file.

Also in your main loop, refresh your world’s background.
If you are using an image for the background:

world.blit(backdrop, backdropbox)

If you are using a color for the background:

world.fill(BLUE)

Finally, tell Pygame to refresh everything on the screen and 
advance the game’s internal clock.

    pygame.display.flip()

    clock.tick(fps)

Save your file, and run it again to see the most boring game 
ever created.

To quit the game, press q on your keyboard.

Freeze your Python environment
PyCharm is managing your code libraries, but your users 
aren’t going to run your game from PyCharm. Just as you 
save your code file, you also need to preserve your virtual 
environment.

Go to the Tools menu and select Sync Python Require-
ments. This saves your library dependencies to a special 
file called requirements.txt. The first time you sync your re-
quirements, PyCharm prompts you to install a plugin and to 
add dependencies. Click to accept these offers.

opensource.com

A requirements.txt is generated for you, and placed into 
your project directory.

Code
Here’s what your code should look like so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import sys

import os

'''

Variables

'''

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://opensource.com 


14 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

BUILD A GAME FRAMEWORK WITH PYTHON USING THE PYGAME MODULE  . . . . . . . . . . . . . . . . . . .

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

    world.blit(backdrop, backdropbox)

    pygame.display.flip()

    clock.tick(fps)

What to do next
In the next article of this series, I’ll show you how to add to 
your currently empty game world, so start creating or finding 
some graphics to use!

Links
[1]  https://opensource.com/article/19/4/managing-python-

packages
[2]  https://opensource.com/article/20/1/what-creative-

commons
[3]  https://kenney.nl/assets/background-elements-redux
[4]  https://www.pinta-project.com/
[5]  http://krita.org/
[6]  https://gumroad.com/l/krita-game-art-tutorial-1
[7]  http://inkscape.org/

worldx = 960

worldy = 720

fps = 40  # frame rate

ani = 4   # animation cycles

main = True

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

'''

Objects

'''

# put Python classes and functions here

'''

Setup

'''

clock = pygame.time.Clock()

pygame.init()

world = pygame.display.set_mode([worldx, worldy])

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

backdropbox = world.get_rect()

'''

Main Loop

'''

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/4/managing-python-packages
https://opensource.com/article/19/4/managing-python-packages
https://opensource.com/article/20/1/what-creative-commons
https://opensource.com/article/20/1/what-creative-commons
https://kenney.nl/assets/background-elements-redux
https://pinta-project.com/pintaproject/pinta/releases
https://www.pinta-project.com/
http://krita.org/
https://gumroad.com/l/krita-game-art-tutorial-1
http://inkscape.org/


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 15

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HOW TO ADD A PLAYER TO YOUR PYTHON GAME

IN THE FIRST ARTICLE of this series, I explained 
how to use Python to create a 

simple, text-based dice game. In the second part, I showed 
you how to build a game from scratch, starting with creating 
the game’s environment [1]. But every game needs a player, 
and every player needs a playable character, so that’s what 
you’ll do next in this third part of the series.

In Pygame, the icon or avatar that a player controls is 
called a sprite. If you don’t have any graphics to use for a 
player sprite yet, download the walk-0.png, walk-2.png, 
walk-4.png, and walk-5.png files [2] from the classic open 
source game Supertux [3] and rename them hero1.png to 
hero4.png Alternately, you can create something for yourself 
using Krita [4] or Inkscape [5], or search OpenGameArt [6].
org for other options. Then, if you didn’t already do so in the 
previous article, create a directory called images within your 
Python project directory. Put the images you want to use in 
your game into the images folder.

To make your game truly exciting, you ought to use an 
animated sprite for your hero. If you’re drawing your charac-
ters yourself, this means you have to draw more assets, but 
it makes a big difference. The most common animation is a 
walk cycle, a series of drawings that make it look like your 
sprite is walking. The quick and dirty version of a walk cycle 
requires four drawings.

Ajay Karat, CC BY-SA 3.0

Note: The code samples in this article allow for both a static 
player sprite and an animated one.

Name your player sprite hero.png. If you’re creating an an-
imated sprite for a walk cycle, append a digit after the name, 

starting with hero1.png. Save you hero image into a directory 
called images in your Python project directory.

Create a Python class
In Python, when you create an object that you want to ap-
pear on screen, you create a class.

Near the top of your Python script, in the Objects section, 
add the code to create a player.  If you’re using a static im-
age with no walk cycle, use this code (note that this code 
goes in the Objects section of your file):

'''

Objects

'''

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.images = []

        img =  pygame.image.load(os.path.join('images',  

'hero.png')).convert()

        self.images.append(img)

        self.image = self.images[0]

        self.rect = self.image.get_rect()

This code block creates a virtual “object” for Python to 
use when referencing your hero sprite. In object-oriented 
programming, an “object” is referred to as a class. The 
object template (specifically, pygame.sprite.Sprite) is 
provided by Pygame. That’s what makes it possible for 
you to define an image to represent the player character. If 
you had to program that from scratch, you’d have to learn 
a lot more about Python before you could start creating a 
game, and that’s the advantage of using a framework like 
Pygame.

If you have a walk cycle for your playable character, save 
each drawing as an individual file called hero1.png to hero4.

How to add a player to your  
Python game
Part three of a series on building a game from scratch with Python.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://github.com/SuperTux/supertux/tree/master/data/images/creatures/tux/small
https://www.supertux.org/
http://krita.org/
http://inkscape.org/
https://opengameart.org/
https://github.com/devilsgarage
https://creativecommons.org/licenses/by-sa/3.0/


16 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

HOW TO ADD A PLAYER TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Change the drawing clause of your main loop to look 
like this:

    world.blit(backdrop, backdropbox)

    player_list.draw(world) # draw player

    pygame.display.flip()

    clock.tick(fps)

Launch your game now. Your player spawns!

Setting the alpha channel
Depending on how you created your player sprite, it may 
have a colored block around it. What you are seeing is the 
space that ought to be occupied by an alpha channel. It’s 
meant to be the “color” of invisibility, but Python doesn’t know 
to make it invisible yet. What you are seeing, then, is the 
space within the bounding box (or “hit box,” in modern gam-
ing terms) around the sprite.

You can tell Python what color to make invisible by setting 
an alpha channel and using RGB values. If you don’t know 
the RGB values your drawing uses as alpha, open your 
drawing in Pinta or Inkscape and fill the empty space around 
your drawing with a unique color, like #00ff00 (more or less 
a “greenscreen green”). Take note of the color’s hex value 
(#00ff00, for greenscreen green) and use that in your Python 
script as the alpha channel.

Using alpha requires the addition of two lines in your Sprite 
creation code. Some version of the first line is already in your 
code. Add the other two lines:

    img =  pygame.image.load(os.path.join('images','hero' +  

str(i) + '.png')).convert()

    img.convert_alpha()     # optimise alpha

    img.set_colorkey(ALPHA) # set alpha

Python doesn’t know what to use as alpha unless you tell it.
If you believe your image already has an alpha channel, 

you can try setting a variable ALPHA to 0 or 255, both of 
which are common places for alpha to be stored. One of 
those may work, but maybe  due to my background in film 
production, I prefer to explicitly create and set my own alpha 
channel.

png in your project’s images folder. Then use a loop to tell 
Python to cycle through each file. This is one of the features 
of object-oriented programming: each class can have tasks 
assigned exclusively to it, which occurs without affecting the 
“world” around it. In this case, your player character sprite is 
programmed to cycle through four different images to create 
the illusion of walking, and this can happen regardless of 
what else is happening around it.

'''

Objects

'''

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

Bring the player into the game world
Now that a Player class exists, you must use it to spawn 
a player sprite in your game world. If you never call on the 
Player class, it never runs, and there will be no player. You 
can test this out by running your game now. The game runs 
just as well as it did at the end of the previous article, with the 
exact same results: an empty game world.

To bring a player sprite into your world, you must “call” the 
Player class to generate a sprite and then add it to a Pygame 
sprite group. Add these lines to your Setup section:

player = Player()   # spawn player

player.rect.x = 0   # go to x

player.rect.y = 0   # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

Try launching your game to see what happens. Warning: it 
won’t do what you expect. When you launch your project, the 
player sprite doesn’t spawn. Actually, it spawns, but only for 
a millisecond. How do you fix something that only happens 
for a millisecond? You might recall from the previous article 
that you need to add something to the main loop. To make 
the player spawn for longer than a millisecond, tell Python to 
draw it once per loop.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 17

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HOW TO ADD A PLAYER TO YOUR PYTHON GAME

Setting your own alpha
In the Variable section of your code, add this variable 
definition:

ALPHA = (0, 255, 0)

In this example code, 0,255,0 is used, which is the same 
value in RGB as #00ff00 is in hex. You can get all of these 
color values from a good graphics application like GIMP [7], 
Krita, or Inkscape. Alternately, you can also detect color 
values with a good system-wide color chooser, like KColor-
Chooser  [8] or ColourPicker [9].

If your graphics application is rendering your sprite’s back-
ground as some other value, adjust the values of your al-
pha variable as needed. No matter what you set your alpha 
value, it will be made “invisible.” RGB values are very strict, 
so if you need to use 000 for alpha, but you need 000 for 
the black lines of your drawing, just change the lines of your 
drawing to 111, which is close enough to black that nobody 
but a computer can tell the difference.

Launch your game to see the results.

If you're having trouble setting an alpha channel for your 
character, refer to Appendix 3 for detailed instructions on 
getting it right.

Here’s the code in its entirety so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

from typing import Tuple

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  # frame rate

ani = 4  # animation cycles

world = pygame.display.set_mode([worldx, worldy])

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.images = []

        for i in range(1, 5):

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://gimp.org/
https://github.com/KDE/kcolorchooser
https://github.com/stuartlangridge/ColourPicker


18 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

HOW TO ADD A PLAYER TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

    world.blit(backdrop, backdropbox)

    player_list.draw(world)

    pygame.display.flip()

    clock.tick(fps)

In the fourth part of this series, I’ll show you how to make 
your sprite move. How exciting!

Links
[1]  https://opensource.com/article/17/12/program-game-

python-part-2-creating-game-world
[2]  https://github.com/SuperTux/supertux/tree/master/data/

images/creatures/tux/small
[3]  https://www.supertux.org/
[4]  http://krita.org/
[5]  http://inkscape.org/
[6]  https://opengameart.org/
[7]  http://gimp.org/
[8] https://github.com/KDE/kcolorchooser
[9]  https://github.com/stuartlangridge/ColourPicker

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()  # optimise alpha

            img.set_colorkey(ALPHA)  # set alpha

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 0  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://github.com/SuperTux/supertux/tree/master/data/images/creatures/tux/small
https://github.com/SuperTux/supertux/tree/master/data/images/creatures/tux/small
https://www.supertux.org/
http://krita.org/
http://inkscape.org/
https://opengameart.org/
http://gimp.org/
https://github.com/KDE/kcolorchooser
https://github.com/stuartlangridge/ColourPicker


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 19

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  USING PYGAME TO MOVE YOUR GAME CHARACTER AROUND

IN THE FIRST ARTICLE in this series, I explained 
how to use Python to create a 

simple, text-based dice game [1]. In the second part, you 
began building a game from scratch, starting with creating 
the game’s environment [2]. And in the third installment, you 
created a player sprite [3] and made it spawn in your (rather 
empty) game world. As you’ve probably noticed, a game isn’t 
much fun when you can’t move your character around. In 
this article, you’ll use Pygame to add keyboard controls so 
you can direct your character’s movement.

There are functions in Pygame to add other kinds of con-
trols (such as a mouse or game controller), but since you 
certainly have a keyboard if you’re typing out Python code, 
that’s what this article covers. Once you understand key-
board controls, you can explore other options on your own.

You created a key to quit your game in the second article in 
this series, and the principle is the same for movement. How-
ever, getting your character to move is a little more complex.

Start with the easy part: setting up the controller keys.

Setting up keys for controlling your player sprite
Open your Python game script in IDLE, PyCharm, or a text 
editor.

Because the game must constantly “listen” for keyboard 
events, you’ll be writing code that needs to run continuously. 
Can you figure out where to put code that needs to run con-
stantly for the duration of the game?

If you answered “in the main loop,” you’re correct! Re-
member that unless code is in a loop, it runs (at most) only 
once—and it may not run at all if it’s hidden away in a class 
or function that never gets used.

To make Python monitor for incoming key presses, add 
this code to the main loop. There’s no code to make anything 
happen yet, so use print statements to signal success. This 
is a common debugging technique.

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit(); sys.exit()

            main = False

        if event.type == pygame.KEYDOWN:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                print('left')

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                print('right')

            if event.key == pygame.K_UP or event.key == ord('w'):

            print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                print('left stop')

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                print('right stop')

            if event.key == ord('q'):

                pygame.quit()

                sys.exit()

                main = False

Some people prefer to control player characters with the 
keyboard characters W, A, S, and D, and others prefer to 
use arrow keys. Be sure to include both options.

Note: It’s vital that you consider all of your users when pro-
gramming. If you write code that works only for you, it’s very 
likely that you’ll be the only one who uses your application. 
More importantly, if you seek out a job writing code for mon-
ey, you are expected to write code that works for everyone. 
Giving your users choices, such as the option to use either 
arrow keys or WASD (it’s called accessibility), is a sign of a 
good programmer.

Launch your game using Python, and watch the console 
window for output when you press the right, left, and up ar-
rows, or the A, D, and W keys.

$ python ./your-name_game.py

  left

  left stop

Using Pygame to move  
your game character around
In the fourth part of this series, learn how to code the controls needed to move a game character.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/10/python-101
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://opensource.com/article/17/12/program-game-python-part-3-spawning-player


20 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

USING PYGAME TO MOVE YOUR GAME CHARACTER AROUND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

its position, designated by the self.rect.x and self.rect.y 
properties, to its current position plus whatever amount of 
movex or movey is applied. (The number of pixels the move 
requires is set later.)

    def update(self):

        """

        Update sprite position

        """

        self.rect.x = self.rect.x + self.movex        

Do the same thing for the Y position:

        self.rect.y = self.rect.y + self.movey

For animation, advance the animation frames whenever 
your sprite is moving, and use the corresponding animation 
frame as the player image:

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

        # moving right

        if self.movex > 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

Tell the code how many pixels to add to your sprite’s position 
by setting a variable, then use that variable when triggering 
the functions of your Player sprite.

First, create the variable in your setup section. In this 
code, the first two lines are for context, so just add the third 
line to your script:

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10  # how many pixels to move

Now that you have the appropriate function and variable, use 
your key presses to trigger the function and send the vari-
able to your sprite.

Do this by replacing the print statements in your main 
loop with the Player sprite’s name (player), the function 
(.control), and how many steps along the X axis and Y axis 
you want the player sprite to move with each loop.

        if event.type == pygame.KEYDOWN:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

  right

  right stop

  jump

This confirms that Pygame detects your key presses correctly. 
Now it’s time to do the hard work of making the sprite move.

Coding the player movement function
To make your sprite move, you must create a property for 
your sprite that represents movement. When your sprite is 
not moving, this variable is set to 0.

If you are animating your sprite, or should you decide to 
animate it in the future, you also must track frames so the 
walk cycle stays on track.

Create these variables in the Player class. The first two 
lines are for context (you already have them in your code, if 
you’ve been following along), so add only the last three:

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0 # move along X

        self.movey = 0 # move along Y

        self.frame = 0 # count frames

With those variables set, it’s time to code the sprite’s 
movement.

The player sprite doesn’t need to respond to control all the 
time because sometimes it isn’t being told to move. The code 
that controls the sprite, therefore, is only one small part of all 
the things the player sprite can do. When you want to make 
an object in Python do something independent of the rest 
of its code, you place your new code in a function. Python 
functions start with the keyword def, which stands for define.

Make a function in your Player class to add some num-
ber of pixels to your sprite’s position on screen. Don’t worry 
about how many pixels you add yet; that will be decided in 
later code.

    def control(self,x,y):

        """

        control player movement

        """

        self.movex += x

        self.movey += y

To move a sprite in Pygame, you must tell Python to redraw 
the sprite in its new location—and where that new location is.

Since the Player sprite isn’t always moving, make these 
updates a dedicated function within the Player class. Add 
this function after the control function you created earlier.

To make it appear that the sprite is walking (or flying, or 
whatever it is your sprite is supposed to do), you need to 
change its position on screen when the appropriate key is 
pressed. To get it to move across the screen, you redefine 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  USING PYGAME TO MOVE YOUR GAME CHARACTER AROUND

                player.control(-steps,0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'): 

                player.control(steps,0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps,0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps,0)

            if event.key == ord('q'):

                pygame.quit()

                sys.exit()

                main = False

Remember, steps is a variable representing how many pix-
els your sprite moves when a key is pressed. If you add 10 
pixels to the location of your player sprite when you press D 
or the right arrow, then when you stop pressing that key you 
must subtract 10 (-steps) to return your sprite’s momentum 
back to 0.

Try your game now. Warning: it won’t do what you expect.

Updating the sprite graphic
Why doesn’t your sprite move yet? Because the main loop 
doesn’t call the update function.

Add code to your main loop to tell Python to update the 
position of your player sprite. Add the line with the comment:

    player.update()  # update player position

    player_list.draw(world)

    pygame.display.flip()

    clock.tick(fps)

Launch your game again to witness your player sprite move 
across the screen at your bidding. There’s no vertical move-
ment yet because those functions will be controlled by grav-
ity, but that’s another lesson for another article.

Movement works, but there’s still one small problem: 
your hero graphic doesn’t turn to face the direction it’s 
walking. In other words, if you designed your hero facing 
right, then it looks like it’s walking backwards when you 
press the left arrow key. Normally, you’d expect your hero 
to turn left when walking left, and turn right again to walk 
to the right.

Flipping your sprite
You can flip a graphic with Pygame’s transform function. 
This, like all the other functions you’ve been using for this 
game, is a lot of complex code and maths distilled into a 
single, easy to use, Python keyword. This is a great example 
of why a framework helps you code. Instead of having to 
learn basic principles of drawing pixels on screen, you can 

let Pygame do all the work and just make a call to a funciton 
that already exists.

You only need the transform on the instance when your 
graphic is walking the opposite way it’s facing by default. My 
graphic faces right, so I apply the transform to the left code 
block. The pygame.transform.flip function takes three argu-
ments, according to Pygame documentation [4]: what to flip, 
whether to flip horizontally, and whether to flip vertically. In this 
case, those are the graphic (which you’ve already defined in the 
existing code), True for horizontal, and False for a vertical flip.

Update your code:

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image =  pygame.transform.flip 

(self.images[self.frame // ani],  

True, False)

Notice that the transform function is inserted into your ex-
isting code. The variable self.image is still getting defined 
as an image from your list of hero images, but it’s getting 
“wrapped” in the transform function.

Try your code now, and watch as your hero does an about-
face each time you point it in a different direction.

That’s enough of a lesson for now. Until the next article, 
you might try exploring other ways to control your hero. For 
intance, should you have access to a joystick, try reading 
Pygame’s documentation for its joystick [5] module and see 
if you can make your sprite move that way. Alternately, see if 
you can get the mouse [6] to interact with your sprite.

Most importantly, have fun!

All the code used in this tutorial
For your reference, here is all the code used in this series of 
articles so far.

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/docs/ref/transform.html#pygame.transform.flip
http://pygame.org/docs/ref/joystick.html
http://pygame.org/docs/ref/mouse.html#module-pygame.mouse


22 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

USING PYGAME TO MOVE YOUR GAME CHARACTER AROUND  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    def update(self):

        """

        Update sprite position

        """

        self.rect.x = self.rect.x + self.movex

        self.rect.y = self.rect.y + self.movey

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 0  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

from typing import Tuple

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  # frame rate

ani = 4  # animation cycles

world = pygame.display.set_mode([worldx, worldy])

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()  # optimise alpha

            img.set_colorkey(ALPHA)  # set alpha

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

        self.movey += y

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 23

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  USING PYGAME TO MOVE YOUR GAME CHARACTER AROUND

    player_list.draw(world)

    pygame.display.flip()

    clock.tick(fps)

You’ve come far and learned much, but there’s a lot more 
to do. In the next few articles, you’ll add enemy sprites [7], 
emulated gravity, and lots more. In the mean time, practice 
with Python!

Links
[1]  https://opensource.com/article/17/10/python-101
[2]  https://opensource.com/article/17/12/program-game-

python-part-2-creating-game-world
[3]  https://opensource.com/article/17/12/program-game-

python-part-3-spawning-player
[4]  https://www.pygame.org/docs/ref/transform.html#pygame.

transform.flip
[5]  http://pygame.org/docs/ref/joystick.html
[6]  http://pygame.org/docs/ref/mouse.html#module-pygame.

mouse
[7]  https://opensource.com/article/18/5/pygame-enemy

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    world.blit(backdrop, backdropbox)

    player.update()

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/5/pygame-enemy
https://opensource.com/article/17/10/python-101
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://opensource.com/article/17/12/program-game-python-part-2-creating-game-world
https://opensource.com/article/17/12/program-game-python-part-3-spawning-player
https://opensource.com/article/17/12/program-game-python-part-3-spawning-player
https://www.pygame.org/docs/ref/transform.html#pygame.transform.flip
https://www.pygame.org/docs/ref/transform.html#pygame.transform.flip
http://pygame.org/docs/ref/joystick.html
http://pygame.org/docs/ref/mouse.html#module-pygame.mouse
http://pygame.org/docs/ref/mouse.html#module-pygame.mouse
https://opensource.com/article/18/5/pygame-enemy


24 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

IN THE PREVIOUS ARTICLES in this series 
(see part 1, part 2, part 3, 

and part 4), you learned how to use Pygame and Python to 
spawn a playable hero character in an as-yet empty video 
game world. But what’s a hero without a villain?

It would make for a pretty boring game if you had no ene-
mies, so in this article, you’ll add an enemy to your game and 
construct a framework for building levels.

It might seem strange to jump ahead to enemies when there’s 
still more to be done to make the player sprite fully functional, 
but you’ve learned a lot already, and creating villains is very 
similar to creating a player sprite. So relax, use the knowledge 
you already have, and see what it takes to stir up some trouble.

For this exercise, you need an enemy sprite. If you haven’t 
downloaded one already, you can find Creative Commons [1] 
assets on OpenGameArt.org [2].

Creating the enemy sprite
Whether you realize it or not, you already know how to imple-
ment enemies. The process is similar to creating a player sprite:

1.  Make a class so enemies can spawn.
2.   Create an update function for the enemy, and update the 

enemy in your main loop.
3.   Create a move function so your enemy can roam around.

Start with the class. Conceptually, it’s mostly the same as 
your Player class. You set an image or series of images, and 
you set the sprite’s starting position.

Before continuing, make sure you have placed your enemy 
graphic in your game project’s images directory (the same di-
rectory where you placed your player image). In this article’s 
example code, the enemy graphic is named enemy.png.

A game looks a lot better when everything alive is ani-
mated. Animating an enemy sprite is done the same way as 
animating a player sprite. For now, though, keep it simple, 
and use a non-animated sprite.

At the top of the objects section of your code, create a 
class called Enemy with this code:

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self,x,y,img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

If you want to animate your enemy, do it the same way you 
animated your player [3].

Spawning an enemy
You can make the class useful for spawning more than just 
one enemy by allowing yourself to tell the class which image 
to use for the sprite and where in the world you want the 
sprite to appear. This means you can use this same enemy 
class to generate any number of enemy sprites anywhere 
in the game world. All you have to do is make a call to the 
class, and tell it which image to use, along with the X and Y 
coordinates of your desired spawn point.

Ao you did when spawning a player sprite, add code to 
designate a spawn point in the setup section of your script:

enemy = Enemy(300,0,'enemy.png')     # spawn enemy

enemy_list = pygame.sprite.Group()   # create enemy group

enemy_list.add(enemy)                # add enemy to group

In that sample code, you spawn an enemy by creating a new 
object (called enemy), at 300 pixels on the X axis and 0 on 
the Y axis. Spawning the enemy at 0 on the Y axis means 
that its top left corner is located at 0, with the graphic itself 
descending down from that point. You might need to adjust 
these numbers, or the numbers for your hero sprite, depend-
ing on how big your sprites are, but try to get it to spawn in 
a place you can reach with your player sprite (accounting for 
your game’s current lack of vertical movement). In the end, I 
placed my enemy at 0 pixels on the Y axis and my hero at 30 
pixels to get them boh to appear on the same plane. Experi-
ment with the spawn points for yourself, keeping in mind that 
greater Y axis numbers are lower on the screen.

Your hero graphic had an image “hard coded” into its class 
because there’s only one hero, but you may want to use dif-
ferent graphics for each enemy, so the image file is some-

What’s a hero without a villain? 
How to add one to your Python game
In part five of this series on building a Python game from scratch, add a bad guy for your good guy 
to battle.

WHAT’S A HERO WITHOUT A VILLAIN? HOW TO ADD ONE TO YOUR PYTHON GAME  . . . . . . . . . . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/1/what-creative-commons
https://opengameart.org/content/opp2017-sprites-characters-objects-effects
https://opensource.com/article/17/12/game-python-moving-player


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 25

            enemy = Enemy(eloc[0],eloc[1],'enemy.png') # spawn enemy

            enemy_list = pygame.sprite.Group() # create enemy group

            enemy_list.add(enemy)              # add enemy to group

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

The return statement ensures that when you use the Level.bad 
function, you’re left with an enemy_list containing each enemy 
you defined.

Since you are creating enemies as part of each level now, 
your setup section needs to change, too. Instead of creating 
an enemy, you must define where the enemy will spawn and 
what level it belongs to.

eloc = []

eloc = [300,0]

enemy_list = Level.bad( 1, eloc )

Run the game again to confirm your level is generating cor-
rectly. You should see your player, as usual, and the enemy 
you added in this chapter.

Hitting the enemy
An enemy isn’t much of an enemy if it has no effect on the 
player. It’s common for enemies to cause damage when a 
player collides with them.

Since you probably want to track the player’s health, the 
collision check happens in the Player class rather than in the 
Enemy class. You can track the enemy’s health, too, if you 
want. The logic and code are pretty much the same, but, for 
now, just track the player’s health.

To track player health, you must first establish a variable 
for the player’s health. The first line in this code sample is for 
context, so add the second line to your Player class:

        self.frame  = 0

        self.health = 10

In the update function of your Player class, add this code 
block:

        hit_list =  pygame.sprite.spritecollide(self, enemy_list, 

False)

        for enemy in hit_list:

            self.health -= 1

            print(self.health)

This code establishes a collision detector using the Pygame 
function sprite.spritecollide, called enemy_hit. This col-
lision detector sends out a signal any time the hitbox of its 
parent sprite (the player sprite, where this detector has been 
created) touches the hitbox of any sprite in enemy_list. The 

thing you can define at sprite creation. The image used for 
this enemy sprite is enemy.png.

Drawing a sprite on screen
If you were to launch your game now, it would run but you 
wouldn’t see an enemy. You might recall the same problem 
when you created your player sprite. Do you remember how 
to fix it?

To get a sprite to appear on screen, you must add them to 
your main loop. If something is not in your main loop, then it 
only happens once, and only for a millisecond. If you want 
something to persist in your game, it must happen in the 
main loop.

You must add code to draw all enemies in the enemy 
group (called enemy_list), which you established in your 
setup section, on the screen. The middle line in this example 
code is the new line you need to add:

    player_list.draw(world)

    enemy_list.draw(world)  # refresh enemies

    pygame.display.flip()

Right now, you have only one enemy, but you can add 
more later if you want. As long as you add an enemy to 
the enemies group, it will be drawn to the screen during 
the main loop.

Launch your game. Your enemy appears in the game 
world at whatever X and Y coordinate you chose.

Level one
Your game is in its infancy, but you will probably want to add 
a series of levels, eventually. It’s important to plan ahead 
when you program so your game can grow as you learn 
more about programming. Even though you don’t even have 
one complete level yet, you should code as if you plan on 
having many levels.

Think about what a “level” is. How do you know you are at 
a certain level in a game?

You can think of a level as a collection of items. In a 
platformer, such as the one you are building here, a level 
consists of a specific arrangement of platforms, place-
ment of enemies and loot, and so on. You can build a 
class that builds a level around your player. Eventually, 
when you create more than one level, you can use this 
class to generate the next level when your player reach-
es a specific goal.

Move the code you wrote to create an enemy and its group 
into a new function that gets called along with each new lev-
el. It requires some modification so that each time you create 
a new level, you can create and place several enemies:

class Level():

    def bad(lvl,eloc):

        if lvl == 1:

. . . . . . . . . . . .  WHAT’S A HERO WITHOUT A VILLAIN? HOW TO ADD ONE TO YOUR PYTHON GAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


26 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

After you enter this code, PyCharm will offer to simplify the 
“chained comparison”. You can accept its suggestion to optimize 
your code, and to learn some advanced Python syntax. You can 
also safely ignore PyCharm. The code works, either way.

You can adjust the distance and speed as needed.
The question is: does this code work if you launch your 

game now?
Of course not! And you know why: you must call the move 

function in your main loop.
The first line in this sample code is for context, so add the 

last two lines:

    enemy_list.draw(world) #refresh enemy

    for e in enemy_list:

        e.move()

Launch your game and see what happens when you hit your 
enemy. You might have to adjust where the sprites spawn 
so that your player and your enemy sprite can collide. When 
they do collide, look in the console of IDLE or PyCharm to 
see the health points being deducted.

You may notice that health is deducted for every moment 
your player and enemy are touching. That’s a problem, but 
it’s a problem you’ll solve later, after you’ve had more prac-
tice with Python.

For now, try adding some more enemies. Remember to 
add each enemy to the enemy_list. As an exercise, see if 
you can think of how you can change how far different ene-
my sprites move.

for loop is triggered when such a signal is received and de-
ducts a point from the player’s health.

Since this code appears in the update function of your 
player class and update is called in your main loop, Pygame 
checks for this collision once every clock tick.

Moving the enemy
An enemy that stands still is useful if you want, for instance, 
spikes or traps that can harm your player, but the game is 
more of a challenge if the enemies move around a little.

Unlike a player sprite, the enemy sprite is not controlled by 
the user. Its movements must be automated.

Eventually, your game world will scroll, so how do you get 
an enemy to move back and forth within the game world 
when the game world itself is moving?

You tell your enemy sprite to take, for example, 10 paces 
to the right, then 10 paces to the left. An enemy sprite can’t 
count, so you have to create a variable to keep track of how 
many paces your enemy has moved and program your ene-
my to move either right or left depending on the value of your 
counting variable.

First, create the counter variable in your Enemy class. Add 
the last line in this code sample:

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0 # counter variable

Next, create a move function in your Enemy class. Use an 
if-else loop to create what is called an infinite loop:

•   Move right if the counter is on any number from 0 to 100.
•   Move left if the counter is on any number from 100 to 200.
•   Reset the counter back to 0 if the counter is greater than 200.

An infinite loop has no end; it loops forever because nothing 
in the loop is ever untrue. The counter, in this case, is always 
either between 0 and 100 or 100 and 200, so the enemy 
sprite walks right to left and right to left forever.

The actual numbers you use for how far the enemy will 
move in either direction depending on your screen size, and 
possibly, eventually, the size of the platform your enemy is 
walking on. Start small and work your way up as you get 
used to the results. Try this first:

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

WHAT’S A HERO WITHOUT A VILLAIN? HOW TO ADD ONE TO YOUR PYTHON GAME  . . . . . . . . . . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 27

Code so far
For you reference, here’s the code so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

from typing import Tuple

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

        self.movey += y

    def update(self):

        """

        Update sprite position

        """

        self.rect.x = self.rect.x + self.movex

        self.rect.y = self.rect.y + self.movey

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

        hit_list =  pygame.sprite.spritecollide(self, enemy_list, 

False)

        for enemy in hit_list:

            self.health -= 1

            print(self.health)

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self,x,y,img):

        pygame.sprite.Sprite.__init__(self)

. . . . . . . . . . . .  WHAT’S A HERO WITHOUT A VILLAIN? HOW TO ADD ONE TO YOUR PYTHON GAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


28 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

WHAT’S A HERO WITHOUT A VILLAIN? HOW TO ADD ONE TO YOUR PYTHON GAME  . . . . . . . . . . . .

eloc = []

eloc = [300, 0]

enemy_list = Level.bad(1, eloc )

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    world.blit(backdrop, backdropbox)

    player.update()

    player_list.draw(world)

    enemy_list.draw(world)

    for e in enemy_list:

        e.move()

    pygame.display.flip()

    clock.tick(fps)

Links
[1]  https://opensource.com/article/20/1/what-creative-

commons
[2]  https://opengameart.org/content/opp2017-sprites-

characters-objects-effects
[3]  https://opensource.com/article/17/12/game-python-

moving-player

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

class Level():

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/1/what-creative-commons
https://opensource.com/article/20/1/what-creative-commons
https://opengameart.org/content/opp2017-sprites-characters-objects-effects
https://opengameart.org/content/opp2017-sprites-characters-objects-effects
https://opensource.com/article/17/12/game-python-moving-player
https://opensource.com/article/17/12/game-python-moving-player


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 29

A PLATFORMER GAME needs platforms. In 
Pygame [1], the platforms 

themselves are sprites, just like your playable sprite. 
That’s important because having platforms that are ob-
jects makes it a lot easier for your player sprite to interact 
with them.

There are two major steps in creating platforms. First, you 
must code the objects, and then you must map out where 
you want the objects to appear.

Coding platform objects
To build a platform object, you create a class called Platform. 
It’s a sprite [2], just like your Player sprite, with many of the 
same properties.

Your Platform class needs to know a lot of information 
about what kind of platform you want, where it should appear 
in the game world, and what image it should contain. A lot of 
that information might not even exist yet, depending on how 
much you have planned out your game, but that’s all right. 
Just as you didn’t tell your Player sprite how fast to move 
until the end of the Movement article [3], you don’t have to 
tell Platform everything upfront.

In the objects section of your script, create a new class:

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

When called, this class creates an object onscreen in some 
X and Y location, with some width and height, using some 

image file for texture. It’s very similar to how players or en-
emies are drawn onscreen. You probably recognize this 
same code structure from the Player and Enemy classes.

Types of platforms
The next step is to map out where all your platforms need 
to appear.

The tile method
There are a few different ways to implement a platform 
game world. In the original side-scroller games, such as 
Mario Super Bros. and Sonic the Hedgehog, the technique 
was to use “tiles,” meaning that there were a few blocks 
to represent the ground and various platforms, and these 
blocks were used and reused to make a level. You have 
only eight or 12 different kinds of blocks, and you line them 
up onscreen to create the ground, floating platforms, and 
whatever else your game needs. Some people find this the 
easier way to make a game since you just have to make (or 
download) a small set of level assets to create many differ-
ent levels. The code, however, requires a little more math.

SuperTux, a tile-based video game.

The hand-painted method
Another method is to make each and every asset as one 
whole image. If you enjoy creating assets for your game 

Put platforms in a Python game 
with Pygame
In part six of this series on building a Python game from scratch, create some platforms for your 
characters to travel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT PLATFORMS IN A PYTHON GAME WITH PYGAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/news
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/17/12/game-python-moving-player


30 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT PLATFORMS IN A PYTHON GAME WITH PYGAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example of coordinates in Pygame.

The X axis starts at 0 on the far left and increases infinitely to 
the right. The Y axis starts at 0 at the top of the screen and 
extends down.

Image sizes
Mapping out a game world is meaningless if you don’t know 
how big your players, enemies, and platforms are. You can 
find the dimensions of your platforms or tiles in a graphics 
program. In Krita [5], for example, click on the Image menu 
and select Properties. You can find the dimensions at the 
very top of the Properties window.

Alternately, you can create a simple Python script to tell 
you the dimensions of an image. To do that, you must in-
stall a Python module called Pillow, which provides the 
Python Image Library (PIL). Add Pillow to your project’s 
requirements.txt file:

pygame~=1.9.6

Pillow

Create a new Python file in PyCharm and name it identify. 
Type this code into it:

#!/usr/bin/env python3

# GNU All-Permissive License

# Copying and distribution of this file, with or without

# modification, are permitted in any medium without royalty

# provided the copyright notice and this notice are preserved. 

# This file is offered as-is, without any warranty.

from PIL import Image

import os.path

import sys

world, this is a great excuse to spend time in a graphics ap-
plication, building each and every part of your game world. 
This method requires less math, because all the platforms 
are whole, complete objects, and you tell Python where to 
place them onscreen.

Each method has advantages and disadvantages, and 
the code you must use is slightly different depending on the 
method you choose. I’ll cover both so you can use one or 
the other, or even a mix of both, in your project.

Level mapping
Mapping out your game world is a vital part of level design 
and game programming in general. It does involve math, but 
nothing too difficult, and Python is good at math so it can 
help some.

You might find it helpful to design on paper first. Get a 
sheet of paper and draw a box to represent your game win-
dow. Draw platforms in the box, labeling each with its X 
and Y coordinates, as well as its intended width and height. 
The actual positions in the box don’t have to be exact, as 
long as you keep the numbers realistic. For instance, if your 
screen is 720 pixels wide, then you can’t fit eight platforms 
at 100 pixels each all on one screen.

Of course, not all platforms in your game have to fit in 
one screen-sized box, because your game will scroll as 
your player walks through it. So keep drawing your game 
world to the right of the first screen until the end of the 
level.

If you prefer a little more precision, you can use graph 
paper. This is especially helpful when designing a game with 
tiles because each grid square can represent one tile.

Coordinates
You may have learned in school about the Cartesian coor-
dinate system [4]. What you learned applies to Pygame, ex-
cept that in Pygame, your game world’s coordinates place 
0,0 in the top-left corner of your screen instead of in the 
middle, which is probably what you’re used to from Geom-
etry class.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://krita.org/en/
https://en.wikipedia.org/wiki/Cartesian_coordinate_system


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 31

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT PLATFORMS IN A PYTHON GAME WITH PYGAME

if len(sys.argv) > 1:

    print(sys.argv[1])

else:

    sys.exit('Syntax: identify.py [filename]')

pic = sys.argv[1]

img = Image.open(pic)

X   = img.size[0]

Y   = img.size[1]

print(X, Y)

Click on the Terminal tab at the bottom of the PyCharm 
window to open a terminal within your virtual environ-
ment. Now you can install the Pillow module into your 
environment:

(venv) pip install -r requirements.txt

Requirement already satisfied: pygame~=1.9.6 [...]

Installed Pillow [...]

Once that is installed, run your script from within your game 
project directory:

(venv) python ./identify.py images/ground.png

(1080, 97)

The image size of the ground platform in this example is 
1080 pixels wide and 97 high.

Platform blocks
If you choose to draw each asset individually, you must cre-
ate several platforms and any other elements you want to 
insert into your game world, each within its own file. In other 
words, you should have one file per asset, like this:

One image file per object.

You can reuse each platform as many times as you want, 
just make sure that each file only contains one platform. You 
cannot use a file that contains everything, like this:

Your level cannot be one image file.

You might want your game to look like that when you’ve fin-
ished, but if you create your level in one big file, there is no 
way to distinguish a platform from the background, so either 
paint your objects in their own file or crop them from a large 
file and save individual copies.

Note: As with your other assets, you can use GIMP [6], 
Krita [5], MyPaint [7], or Inkscape [8] to create your game 
assets.

Platforms appear on the screen at the start of each level, 
so you must add a platform function in your Level class. 
The special case here is the ground platform, which is im-
portant enough to be treated as its own platform group. By 
treating the ground as its own special kind of platform, you 
can choose whether it scrolls or whether it stands still while 
other platforms float over the top of it. It’s up to you.

Add these two functions to your Level class:

def ground(lvl,x,y,w,h):

    ground_list = pygame.sprite.Group()

    if lvl == 1:

        ground = Platform(x,y,w,h,'block-ground.png')

        ground_list.add(ground)

    if lvl == 2:

        print("Level " + str(lvl) )

    return ground_list

def platform( lvl ):

    plat_list = pygame.sprite.Group()

    if lvl == 1:

        plat = Platform(200, worldy-97-128, 285,67,'block-big.png')

        plat_list.add(plat)

        plat = Platform(500, worldy-97-320, 197,54,'block-small.png')

        plat_list.add(plat)

    if lvl == 2:

        print("Level " + str(lvl) )

       

    return plat_list

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gimp.org/
http://krita.org/
http://mypaint.org/about/
https://inkscape.org/en/


32 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT PLATFORMS IN A PYTHON GAME WITH PYGAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The simplified-platformer-pack from kenney.nl are 64 pixels 
square, so that’s the dimension for tiles this article uses. 
Should you download or create tiles with a different size, ad-
just the code as needed.

The Platform class is the same as the one provided in the 
previous sections.

The ground and platform in the Level class, however, 
must use loops to calculate how many blocks to use to cre-
ate each platform.

If you intend to have one solid ground in your game 
world, the ground is simple. You just “clone” your ground 
tile across the whole window. For instance, you could 
create a list of X and Y values to dictate where each tile 
should be placed, and then use a loop to take each value 
and draw one tile. This is just an example, so don’t add 
this to your code:

# Do not add this to your code

gloc = [0,656,64,656,128,656,192,656,256,656,320,656,384,656]

If you look carefully, though, you can see all the Y values 
are always the same (656, to be specific), and the X values 
increase steadily in increments of 64, which is the size of 
the tile. That kind of repetition is exactly what computers are 
good at, so you can use a little bit of math logic to have the 
computer do all the calculations for you:

Add this to the setup part of your script:

gloc = []

tx   = 64

ty   = 64

i=0

while i <= (worldx/tx)+tx:

    gloc.append(i*tx)

    i=i+1

ground_list = Level.ground( 1,gloc,tx,ty )

With this code, regardless of the size of your window, Py-
thon divides the width of the game world by the width of the 
tile and creates an array listing each X value. This doesn’t 
calculate the Y value, but that never changes on flat ground 
anyway.

To use the array in a function, use a while loop that looks 
at each entry and adds a ground tile at the appropriate loca-
tion. Add this function to your Level class:

def ground(lvl,gloc,tx,ty):

    ground_list = pygame.sprite.Group()

    i=0

    if lvl == 1:

        while i < len(gloc):

            ground =  Platform(gloc[i],worldy-ty,tx,ty, 

The ground function requires an X and Y location so Pyg-
ame knows where to place the ground platform. It also 
requires the width and height of the platform so Pygame 
knows how far the ground extends in each direction. The 
function uses your Platform class to generate an object 
onscreen, and then adds that object to the ground_list 
group.

The platform function is essentially the same, except that 
there are more platforms to list. In this example, there are 
only two, but you can have as many as you like. After en-
tering one platform, you must add it to the plat_list before 
listing another. If you don’t add a platform to the group, then 
it won’t appear in your game.

Tip: It can be difficult to think of your game 
world with 0 at the top, since the opposite is 
what happens in the real world; when figuring 
out how tall you are, you don’t measure yourself 
from the sky down, you measure yourself from 
your feet to the top of your head.
If it’s easier for you to build your game world from the 
“ground” up, it might help to express Y-axis values as 
negatives. For instance, you know that the bottom of 
your game world is the value of worldy. So worldy 
minus the height of the ground (97, in this example) 
is where your player is normally standing. If your 
character is 64 pixels tall, then the ground minus 
128 is exactly twice as tall as your player. Effectively, 
a platform placed at 128 pixels is about two stories 
tall, relative to your player. A platform at -320 is three 
more stories. And so on.

As you probably know by now, none of your classes and 
functions are worth much if you don’t use them. Add this 
code to your setup section:

ground_list = Level.ground(1, 0, worldy-97, 1080, 97)

plat_list = Level.platform(1)

And add these lines to your main loop (again, the first line is 
just for context):

enemy_list.draw(world)   # refresh enemies

ground_list.draw(world)  # refresh ground

plat_list.draw(world)    # refresh platforms

Tiled platforms
Tiled game worlds are considered easier to make because 
you just have to draw a few blocks upfront and can use them 
over and over to create every platform in the game. There are 
sets of tiles with a Creative Commons license [9] for you to 
use on sites like kenney.nl [10] and OpenGameArt.org [11]. 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/1/what-creative-commons
https://kenney.nl/assets/simplified-platformer-pack
https://opengameart.org/content/simplified-platformer-pack


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 33

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT PLATFORMS IN A PYTHON GAME WITH PYGAME

In the setup section of your program, add this line:

plat_list = Level.platform(1, tx, ty)

To get the platforms to appear in your game world, they must 
be in your main loop. If you haven’t already done so, add 
these lines to your main loop (again, the first line is just for 
context):

        enemy_list.draw(world)  # refresh enemies

        ground_list.draw(world) # refresh ground

        plat_list.draw(world)   # refresh platforms

Launch your game, and adjust the placement of your plat-
forms as needed. Don’t worry that you can’t see the plat-
forms that are spawned offscreen; you’ll fix that soon.

Applying what you know
I haven’t demonstrated how to place your enemy in your 
game world, but apply what you’ve learnt so far to position 
the enemy sprite either on a platform or down on the ground.

Don’t position your hero sprite yet. That must be managed 
by the forces of gravity (or at least an emulation of it), which 
you’ll learn in the next two articles.

For now, here’s the code so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

'tile-ground.png')

            ground_list.add(ground)

            i=i+1

    if lvl == 2:

        print("Level " + str(lvl) )

    return ground_list

This is nearly the same code as the ground function for the 
block-style platformer, provided in the previous section, 
aside from the while loop.

For moving platforms, the principle is similar, but there are 
some tricks you can use to make your life easier.

Rather than mapping every platform by pixels, you can 
define a platform by its starting pixel (its X value), the height 
from the ground (its Y value), and how many tiles to draw. 
That way, you don’t have to worry about the width and height 
of every platform.

The logic for this trick is a little more complex, so copy this 
code carefully. There is a while loop inside of another while 
loop because this function must look at all three values within 
each array entry to successfully construct a full platform. In 
this example, there are only three platforms defined as ploc.
append statements, but your game probably needs more, so 
define as many as you need. Of course, some won’t appear 
yet because they’re far offscreen, but they’ll come into view 
once you implement scrolling.

def platform(lvl,tx,ty):

    plat_list = pygame.sprite.Group()

    ploc = []

    i=0

    if lvl == 1:

        ploc.append((200,worldy-ty-128,3))

        ploc.append((300,worldy-ty-256,3))

        ploc.append((500,worldy-ty-128,4))

        while i < len(ploc):

            j=0

            while j <= ploc[i][2]:

                plat =  Platform((ploc[i][0]+(j*tx)),ploc[i]

[1],tx,ty,'tile.png')

                plat_list.add(plat)

                j=j+1

            print('run' + str(i) + str(ploc[i]))

            i=i+1

           

    if lvl == 2:

        print("Level " + str(lvl) )

    return plat_list

Of course, this has only created a function to calculate plat-
forms for each level. You code doesn’t invoke the function yet.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


34 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT PLATFORMS IN A PYTHON GAME WITH PYGAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

        self.movey += y

    def update(self):

        """

        Update sprite position

        """

        self.rect.x = self.rect.x + self.movex

        self.rect.y = self.rect.y + self.movey

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

        hit_list =  pygame.sprite.spritecollide(self, enemy_list, 

False)

        for enemy in hit_list:

            self.health -= 1

            print(self.health)

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self,x,y,img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.images = []

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 35

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT PLATFORMS IN A PYTHON GAME WITH PYGAME

    if lvl == 1:

        ploc.append((200,worldy-ty-128,3))

        ploc.append((300,worldy-ty-256,3))

        ploc.append((500,worldy-ty-128,4))

        while i < len(ploc):

            j=0

            while j <= ploc[i][2]:

                plat =  Platform((ploc[i][0]+(j*tx)),ploc[i]

[1],tx,ty,'tile.png')

                plat_list.add(plat)

                j=j+1

            print('run' + str(i) + str(ploc[i]))

            i=i+1

           

    if lvl == 2:

        print("Level " + str(lvl) )

    return plat_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

eloc = []

eloc = [300, 0]

enemy_list = Level.bad(1, eloc )

gloc = []

tx   = 64

ty   = 64

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

class Level():

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

    plat_list = pygame.sprite.Group()

    ploc = []

    i=0

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


36 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT PLATFORMS IN A PYTHON GAME WITH PYGAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    world.blit(backdrop, backdropbox)

    player.update()

    player_list.draw(world)

    enemy_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    pygame.display.flip()

    clock.tick(fps)

Links
[1]  https://www.pygame.org/news
[2]  https://opensource.com/article/17/12/game-python-add-a-

player
[3]  https://opensource.com/article/17/12/game-python-

moving-player
[4]  https://en.wikipedia.org/wiki/Cartesian_coordinate_system
[5]  https://krita.org/en/
[6]  https://www.gimp.org/
[7]  http://mypaint.org/about/
[8] https://inkscape.org/en/
[9]  https://opensource.com/article/20/1/what-creative-

commons
[10] https://kenney.nl/assets/simplified-platformer-pack
[11]  https://opengameart.org/content/simplified-platformer-pack

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/news
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/17/12/game-python-moving-player
https://opensource.com/article/17/12/game-python-moving-player
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://krita.org/en/
https://www.gimp.org/
http://mypaint.org/about/
https://inkscape.org/en/
https://opensource.com/article/20/1/what-creative-commons
https://opensource.com/article/20/1/what-creative-commons
https://kenney.nl/assets/simplified-platformer-pack
https://opengameart.org/content/simplified-platformer-pack


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 37

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SIMULATE GRAVITY IN YOUR PYTHON GAME

THE REAL WORLD is full of movement 
and life. The thing 

that makes the real world so busy and dynamic is physics. 
Physics is the way matter moves through space. Since a 
video game world has no matter, it also has no physics, so 
game programmers have to simulate physics.

In terms of most video games, there are basically only two 
aspects of physics that are important: gravity and collision.

You implemented some collision detection when you add-
ed an enemy [1] to your game, but this article adds more 
because gravity requires collision detection. Think about 
why gravity might involve collisions. If you can’t think of any 
reasons, don’t worry—it’ll become apparent as you work 
through the sample code.

Gravity in the real world is the tendency for objects with 
mass to be drawn toward one another. The larger the ob-
ject, the more gravitational influence it exerts. In video game 
physics, you don’t have to create objects with mass great 
enough to justify a gravitational pull; you can just program 
a tendency for objects to fall toward the presumed largest 
object in the video game world: the world itself.

Adding a gravity function
Remember that your player already has a property to de-
termine motion. Use this property to pull the player sprite 
toward the bottom of the screen.

In Pygame, higher numbers are closer to the bottom edge 
of the screen.

In the real world, gravity affects everything. In platformers, 
however, gravity is selective—if you add gravity to your entire 
game world, all of your platforms would fall to the ground. In-
stead, you add gravity just to your player and enemy sprites.

First, add a gravity function in your Player class:

    def gravity(self):

        self.movey += 3.2 # how fast player falls

This is a simple function. First, you set your player in vertical 
motion, whether your player wants to be in motion or not. In 

other words, you have programmed your player to always be 
falling. That’s basically gravity.

For the gravity function to have an effect, you must call it in 
your main loop. This way, Python applies the falling motion to 
your player once every clock tick.

In this code, add the first line to your loop:

    player.gravity() # check gravity

    player.update()

Launch your game to see what happens. Look sharp, be-
cause it happens fast: your player falls out of the sky, right 
off your game screen.

Your gravity simulation is working, but maybe too well.
As an experiment, try changing the rate at which your 

player falls.

Adding a floor to gravity
The problem with your character falling off the world is that there’s 
no way for your game to detect it. In some games, if a player falls 
off the world, the sprite is deleted and respawned somewhere 
new. In other games, the player loses points or a life. Whatever 
you want to happen when a player falls off the world, you have 
to be able to detect when the player disappears offscreen.

In Python, to check for a condition, you can use an if 
statement.

You must check to see if your player is falling and how far 
your player has fallen. If your player falls so far that it reach-
es the bottom of the screen, then you can do something. To 
keep things simple, set the position of the player sprite to 20 
pixels above the bottom edge.

Make your gravity function look like this:

    def gravity(self):

        self.movey += 3.2 # how fast player falls

       

        if self.rect.y > worldy and self.movey >= 0:

            self.movey = 0

            self.rect.y = worldy-ty

Simulate gravity in your Python game
Learn how to program video games with Python’s Pygame module and start manipulating gravity.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/5/pygame-enemy


38 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

SIMULATE GRAVITY IN YOUR PYTHON GAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def gravity(self):

        self.movey += 3.2

        if self.rect.y > worldy and self.movey >= 0:

            self.movey = 0

            self.rect.y = worldy-ty-ty

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

        self.movey += y

Then launch your game. Your sprite still falls, but it stops at 
the bottom of the screen. You may not be able to see your 
sprite behind the ground layer, though. An easy fix is to make 
your player sprite bounce higher by adding another -ty to its 
new Y position after it hits the bottom of the game world:

    def gravity(self):

        self.movey += 3.2 # how fast player falls

       

        if self.rect.y > worldy and self.movey >= 0:

            self.movey = 0

            self.rect.y = worldy-ty-ty

Now your player bounces at the bottom of the screen, just 
behind your ground sprites.

What your player really needs is a way to fight gravity. The 
problem with gravity is, you can’t fight it unless you have 
something to push off of. So, in the next article, you’ll add 
ground and platform collision and the ability to jump. In the 
meantime, try applying gravity to the enemy sprite.

Here’s all the code so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 39

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SIMULATE GRAVITY IN YOUR PYTHON GAME

    def update(self):

        """

        Update sprite position

        """

        self.rect.x = self.rect.x + self.movex

        self.rect.y = self.rect.y + self.movey

        # moving left

        if self.movex < 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.frame += 1

            if self.frame > 3*ani:

                self.frame = 0

            self.image = self.images[self.frame//ani]

        hit_list =  pygame.sprite.spritecollide(self, enemy_list, 

False)

        for enemy in hit_list:

            self.health -= 1

            print(self.health)

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self, x, y, img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

class Level():

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

    plat_list = pygame.sprite.Group()

    ploc = []

    i=0

    if lvl == 1:

        ploc.append((200,worldy-ty-128,3))

        ploc.append((300,worldy-ty-256,3))

        ploc.append((500,worldy-ty-128,4))

        while i < len(ploc):

            j=0

            while j <= ploc[i][2]:

                plat =  Platform((ploc[i][0]+(j*tx)),ploc[i]

[1],tx,ty,'tile.png')

                plat_list.add(plat)

                j=j+1

            print('run' + str(i) + str(ploc[i]))

            i=i+1

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


40 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

SIMULATE GRAVITY IN YOUR PYTHON GAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    world.blit(backdrop, backdropbox)

    player.update()

    player_list.draw(world)

    enemy_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    pygame.display.flip()

    clock.tick(fps)

Links
[1]  https://opensource.com/article/18/5/pygame-enemy

    if lvl == 2:

        print("Level " + str(lvl) )

    return plat_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

eloc = []

eloc = [300, 0]

enemy_list = Level.bad(1, eloc )

gloc = []

tx   = 64

ty   = 64

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

'''

Main Loop

'''

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/5/pygame-enemy


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 41

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD JUMPING TO YOUR PYTHON PLATFORMER GAME

IN THE PREVIOUS ARTICLE in this series, 
you simulated gravity, 

but now you need to give your player a way to fight against 
gravity by jumping.

A jump is a temporary reprieve from gravity. For a few 
moments, you jump up instead of falling down, the way 
gravity is pulling you. But once you hit the peak of your 
jump, gravity kicks in again and pulls you back down to 
earth.

In code, this translates to variables. First, you must estab-
lish variables for the player sprite so that Python can track 
whether or not the sprite is jumping. Once the player sprite 
is jumping, then gravity is applied to the player sprite again, 
pulling it back down to the nearest object.

Setting jump state variables
You must add two new variables to your Player class:

•   One to track whether your player is jumping or not, deter-
mined by whether or not your player sprite is standing on 
solid ground

•   One to bring the player back down to the ground

Add these variables to your Player class. In the following 
code, the lines above the comment are for context, so just 
add the final two lines:

        self.frame = 0

        self.health = 10

        # jump code below

        self.is_jumping = True

        self.is_falling = False

These new values are called Boolean values, which is a term 
(named after mathematician George Boole) meaning either 
true or false. In programming, this is a special data type in-
dicating that a variable is either “on” or “off”. In this case, the 

hero sprite can either be falling or not falling, and it can be 
jumping or not jumping.

The first variable (is_jumping) is set to True because I’m 
spawing the hero in the sky and need it to fall immediately 
to the ground, as if it were in mid-jump. This is a little count-
er-intuitive, because the hero isn’t actually jumping. The 
hero has only just spawned. This is theoretically an abuse 
of this Boolean value, and it is admittedly “cleaner” code to 
have True and False statements that actually reflect reality. 
However, I find it easier to let gravity help the hero find the 
ground rather than having to hard code a spawn position 
every level. It also evokes classic platformers, and gives 
the player the sense of “jumping into” the game world. In 
other words, this is a small initial lie that serves the pro-
gram, so set it to True.

The other variable (is_falling) is also set to True because 
the hero does indeed need to descend to the ground.

Conditional gravity
In the real world, jumping is an act of moving against gravity. 
In your game, though, gravity only needs to be “on” when 
the hero sprite isn’t standing on solid ground. When you 
have gravity on all the time (in Pygame), you risk getting a 
bounce-effect on your hero sprite as gravity constantly tries 
to force the hero down while the collision with the ground re-
sists. Not all game engines require this much interaction with 
gravity, but Pygame isn’t designed exclusively for platform-
ers (you could write a top-down game instead, for example) 
so gravity isn’t managed by the engine.

Your code is only emulating gravity in your game world. 
The hero sprite isn’t actually falling when it appears to fall, it’s 
being moved by your gravity function. To permit your hero 
sprite to fight gravity and jump, or to collide with solid objects 
(like the ground and floating platforms), you must modify 
your gravity function to activate only when the hero is jump-
ing. This code replaces the entire gravity function you wrote 
for the previous article:

Add jumping to your  
Python platformer game
Learn how to fight gravity with jumping in this installment on programming 
video games with Python’s Pygame module.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


42 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD JUMPING TO YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

health points and respawn for falling off the world. That’s 
not strictly necessary; it’s just a common convention in plat-
formers.

Jumping in Pygame
The code to jump happens in several places. First, create a 
jump function to “flip” the is_jumping and is_falling values:

    def jump(self):

        if self.is_jumping is False:

            self.is_falling = False

            self.is_jumping = True

The actual lift-off from the jump action happens in the up-
date function of your Player class:

        if self.is_jumping and self.is_falling is False:

            self.is_falling = True

            self.movey -= 33  # how high to jump

This code executes only when the is_jumping variable 
is True while the is_falling variable is False. When these 
conditions are satisfied, the hero sprite’s Y position is ad-
justed to 33 pixels in the “air”. It’s negative 33 because a 
lower number on the Y axis in Pygame means it’s closer 
to the top of the screen. That’s effectively a jump. You can 
adjust the number of pixels for a lower or higher jump. This 
clause also sets is_falling to True, which prevents another 
jump from being registered. If you set it to False, a jump 
action would compound on itself, shooting your hero into 
space, which is fun to witness but not ideal for gameplay.

Calling the jump function
The problem is that nothing in your main loop is calling the 
jump function yet. You made a placeholder keypress for it 
early on, but right now, all the jump key does is print jump 
to the terminal.

In your main loop, change the result of the Up arrow from 
printing a debug statement to calling the jump function.

            if event.key ==  pygame.K_UP or event.key == 

ord('w'):

                player.jump()

If you would rather use the Spacebar for jumping, set the key 
to pygame.K_SPACE instead of pygame.K_UP. Alternate-
ly, you can use both (as separate if statements) so that the 
player has a choice.

Landing on a platform
So far, you’ve defined an anti-gravity condition for when the 
player sprite hits the ground, but the game code keeps plat-
forms and the ground in separate lists. (As with so many 
choices made in this article, that’s not strictly necessary, 

    def gravity(self):

        if self.is_jumping:

            self.movey += 3.2

This causes your hero sprite to fall right through the bottom 
of the screen, but you can fix that with some collision detec-
tion on the ground.

Programming solid ground
In the previous article, a quick hack was implemented to 
keep the hero sprite from falling through the bottom of the 
screen. It kept the hero on screen, but only by creating an 
invisible wall across the bottom of the screen. It’s cleaner to 
use objects as objects, and besides it’s pretty common in 
platformers to allow players to fall off the world as a penalty 
for a poorly timed jump.

In the update function of your Player class, add this code:

        ground_hit_list =  pygame.sprite.spritecollide(self, 

ground_list, False)

        for g in ground_hit_list:

            self.movey = 0

            self.rect.bottom = g.rect.top

            self.is_jumping = False  # stop jumping

        # fall off the world

        if self.rect.y > worldy:

            self.health -=1

            print(self.health)

            self.rect.x = tx

            self.rect.y = ty

This code block checks for collisions happening between 
ground sprites and the hero sprite. This is the same princi-
ple you used when detecting a hit against your hero by an 
enemy.

In the event of a collision, it uses builtin information provid-
ed by Pygame to find the bottom of the hero sprite (self.rect.
bottom), and set its position to the top of the ground sprite 
(p.rect.top). This provides the illusion that the hero sprite is 
“standing” on the ground, and prevents it from falling through 
the ground.

It also sets self.is_falling to 0 so that the program is 
aware that the hero is not in mid-jump. Additionally, it sets 
self.movey to 0 so the hero is not pulled by gravity (it’s 
a quirk of game physics that you don’t need to contin-
ue to pull a sprite toward Earth once the sprite has been 
grounded).

The if statement at the end detects whether the player 
has descended below the level of the ground; if so, it de-
ducts health points as a penalty, and then respawns the 
hero sprite back at the top left of the screen (using the val-
ues of tx and ty, the size of tiles. as quick and easy starting 
values.) This assumes that you want your player to lose 

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD JUMPING TO YOUR PYTHON PLATFORMER GAME

and you can experiment with treating the ground as just an-
other platform.) To enable a player sprite to stand on top of 
a platform, you must detect a collision between the player 
sprite and a platform sprite, and stop gravity from “pulling” 
it downward.

Place this code into your update function:

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        for p in plat_hit_list:

            self.is_jumping = False  # stop jumping

            self.movey = 0

            # approach from below

            if self.rect.bottom <= p.rect.bottom:

               self.rect.bottom = p.rect.top

            else:

               self.movey += 3.2

This code scans through the list of platforms for any colli-
sions with your hero sprite. If one is detected, then is_jump-
ing is set to False and any movement in the sprite’s Y posi-
tion is cancelled.

Platforms hang in the air, meaning the player can interact 
with them by approaching them from either above or below. 
It’s up to you how you want the platforms to react to your 
hero sprite, but it’s not uncommon to block a sprite from ac-
cessing a platform from below. The code in the second code 
block treats platforms as a sort of ceiling or pergola, such 
that the hero can jump onto a platform as long as it jumps 
higher than the platform’s topside, but obstructs the sprite 
when it tries to jump from beneath:

The first clause of the if statement detects whether the 
bottom of the hero sprite is less than (higher on the screen) 
than the platform. If it is, then the hero “lands” on the plat-
form, because the value of the bottom of the hero sprite is 
made equal to the top of the platform sprite. Otherwise, the 
hero sprite’s Y position is increased, causing it to “fall” away 
from the platform.

Falling
If you try your game now, you find that jumping works mostly 
as expected, but falling isn’t consistent. For instance, after 
your hero jumps onto a platform, it can’t walk off of a platform 
to fall to the ground. It just stays in the air, as if there was still 
a platform beneath it. However, you are able to cause the 
hero to jump off of a platform.

The reason for this is the way gravity has been implement-
ed. Colliding with a platform turns gravity “off” so the hero 
sprite doesn’t fall through the platform. The problem is, noth-
ing turns gravity back on when the hero walks off the edge 
of a platform.

You can force gravity to reactivate by activating gravity 
during the hero sprite’s movement. Edit the movement code 

in the update function of your Player class, adding a state-
ment to activate gravity during movement. The two lines you 
need to add are commented:

        if self.movex < 0:

            self.is_jumping = True  # turn gravity on

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        if self.movex > 0:

            self.is_jumping = True  # turn gravity on

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image = self.images[self.frame // ani]

This activates gravity long enough to cause the hero sprite 
to fall to the ground upon a failed platform collision check.

Try your game now.  Everything works as expected, but try 
changing some variables to see what’s possible.

In the next article, you’ll make your world scroll.
Here’s all the code so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


44 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD JUMPING TO YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

        """

        control player movement

        """

        self.movex += x

    def jump(self):

        if self.is_jumping is False:

            self.is_falling = False

            self.is_jumping = True

    def update(self):

        """

        Update sprite position

        """

        # moving left

        if self.movex < 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image = self.images[self.frame // ani]

        # collisions

        enemy_hit_list =  pygame.sprite.spritecollide(self, 

enemy_list, False)

        for enemy in enemy_hit_list:

            self.health -= 1

            # print(self.health)

        ground_hit_list =  pygame.sprite.spritecollide(self, 

ground_list, False)

        for g in ground_hit_list:

            self.movey = 0

            self.rect.bottom = g.rect.top

            self.is_jumping = False  # stop jumping

        # fall off the world

        if self.rect.y > worldy:

            self.health -=1

            print(self.health)

            self.rect.x = tx

            self.rect.y = ty

        plat_hit_list =  pygame.sprite.spritecollide(self,  

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.is_jumping = True

        self.is_falling = True

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def gravity(self):

        if self.is_jumping:

            self.movey += 3.2

    def control(self, x, y):

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 45

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD JUMPING TO YOUR PYTHON PLATFORMER GAME

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

        plat_list = pygame.sprite.Group()

        ploc = []

        i=0

        if lvl == 1:

        ploc.append((200, worldy - ty - 128, 3))

        ploc.append((300, worldy - ty - 256, 3))

        ploc.append((500, worldy - ty - 128 , 4))

        while i < len(ploc):

            j=0

            while j <= ploc[i][2]:

                plat =  Platform((ploc[i][0] + (j*tx)),ploc[i]

[1], tx, ty, 'tile.png')

                plat_list.add(plat)

                j = j + 1

            print('run' + str(i) + str(ploc[i]))

            i = i + 1

    if lvl == 2:

        print("Level " + str(lvl) )

    return plat_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

plat_list, False)

        for p in plat_hit_list:

            self.is_jumping = False  # stop jumping

            self.movey = 0

            if self.rect.bottom <= p.rect.bottom:

               self.rect.bottom = p.rect.top

            else:

               self.movey += 3.2

        if self.is_jumping and self.is_falling is False:

            self.is_falling = True

            self.movey -= 33  # how high to jump

        self.rect.x += self.movex

        self.rect.y += self.movey

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self, x, y, img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

class Level():

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


46 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD JUMPING TO YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    world.blit(backdrop, backdropbox)

    player.update()

    player_list.draw(world)

    enemy_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    pygame.display.flip()

    clock.tick(fps)

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

eloc = []

eloc = [300, 0]

enemy_list = Level.bad(1, eloc )

gloc = []

tx   = 64

ty   = 64

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 47

. . . . . . . . . . . . . . . . . . .  ENABLE YOUR PYTHON GAME PLAYER TO RUN FORWARD AND BACKWARD

IN PREVIOUS ENTRIES of this series about creat-
ing video games in Python 3 [1] 

using the Pygame module [2], you designed your level-de-
sign layout, but some portion of your level probably extended 
past your viewable screen. The ubiquitous solution to that 
problem in platformer games is, as the term “side-scroller” 
suggests, scrolling.

The key to scrolling is to make the platforms around the 
player sprite move when the player sprite gets close to the 
edge of the screen. This provides the illusion that the screen 
is a “camera” panning across the game world.

This scrolling trick requires two dead zones at either edge 
of the screen, at which point your avatar stands still while the 
world scrolls by.

Putting the scroll in side-scroller
You need one trigger point to go forward and another if you 
want your player to be able to go backward. These two 
points are simply two variables. Set them each about 100 or 
200 pixels from each screen edge. Create the variables in 
your variables section:

forwardx  = 600

backwardx = 230

In the main loop, check to see whether your hero sprite is at the 
forwardx or backwardx scroll point. If so, move all platforms 
either left or right, depending on whether the world is moving 
forward or backward. In the following code, the final three lines 
of code are only for your reference (be careful not to place this 
code in the for loop checking for keyboard events):

        # scroll the world forward

        if player.rect.x >= forwardx:

                scroll = player.rect.x - forwardx

                player.rect.x = forwardx

                for p in plat_list:

                        p.rect.x -= scroll

        # scroll the world backward

        if player.rect.x <= backwardx:

                scroll = backwardx - player.rect.x

                player.rect.x = backwardx

                for p in plat_list:

                        p.rect.x += scroll

    # scrolling code above

    world.blit(backdrop, backdropbox)

    player.gravity() # check gravity

    player.update()

Launch your game and try it out.

Scrolling works as expected, but you may notice a small 
problem that happens when you scroll the world around your 
player and non-player sprites: the enemy sprite doesn't scroll 
along with the world. Unless you want your enemy sprite to 
pursue your player endlessly, you need to modify the enemy 
code so that when your player makes an expeditious retreat, 
the enemy is left behind.

Enemy scroll
In your main loop, you must apply the same rules for scroll-
ing platforms to your enemy’s position. Because your game 

Enable your Python game player 
to run forward and backward
Let your player run free by enabling the side-scroller effect in your Python platformer using the 
Pygame module.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.python.org/
https://www.pygame.org/news


48 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ENABLE YOUR PYTHON GAME PLAYER TO RUN FORWARD AND BACKWARD  . . . . . . . . . . . . . . . . . . .

world will (presumably) have more than one enemy in it, the 
rules are applied to your enemy list rather than an individual 
enemy sprite. That’s one of the advantages of grouping sim-
ilar elements into lists.

The first two lines are for context, so just add the final two 
to your main loop:

    # scroll the world forward

    if player.rect.x >= forwardx:

        scroll = ΩAAAAAAAAAAA player.rect.x - forwardx

        player.rect.x = forwardx

        for p in plat_list:

            p.rect.x -= scroll

        for e in enemy_list:    # enemy scroll

            e.rect.x -= scroll  # enemy scroll

To scroll in the other direction (again, only add the final two 
lines to your existing code):

    # scroll the world backward

    if player.rect.x <= backwardx:

        scroll = backwardx - player.rect.x

        player.rect.x = backwardx

        for p in plat_list:

            p.rect.x += scroll

        for e in enemy_list:    # enemy scroll

            e.rect.x += scroll  # enemy scroll

Launch the game again and see what happens.
Here’s all the code you’ve written for this Python platform-

er so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

forwardx  = 600

backwardx = 230

BLUE = (25, 25, 200)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

'''

Objects

'''

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.is_jumping = True

        self.is_falling = True

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 49

. . . . . . . . . . . . . . . . . . .  ENABLE YOUR PYTHON GAME PLAYER TO RUN FORWARD AND BACKWARD

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def gravity(self):

        if self.is_jumping:

            self.movey += 3.2

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

    def jump(self):

        if self.is_jumping is False:

            self.is_falling = False

            self.is_jumping = True

    def update(self):

        """

        Update sprite position

        """

        # moving left

        if self.movex < 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image = self.images[self.frame // ani]

        # collisions

        enemy_hit_list =  pygame.sprite.spritecollide(self, 

enemy_list, False)

        for enemy in enemy_hit_list:

            self.health -= 1

            # print(self.health)

        ground_hit_list =  pygame.sprite.spritecollide(self, 

ground_list, False)

        for g in ground_hit_list:

            self.movey = 0

            self.rect.bottom = g.rect.top

            self.is_jumping = False  # stop jumping

        # fall off the world

        if self.rect.y > worldy:

            self.health -=1

            print(self.health)

            self.rect.x = tx

            self.rect.y = ty

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        for p in plat_hit_list:

            self.is_jumping = False  # stop jumping

            self.movey = 0

            if self.rect.bottom <= p.rect.bottom:

               self.rect.bottom = p.rect.top

            else:

               self.movey += 3.2

        if self.is_jumping and self.is_falling is False:

            self.is_falling = True

            self.movey -= 33  # how high to jump

        self.rect.x += self.movex

        self.rect.y += self.movey

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self, x, y, img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


50 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ENABLE YOUR PYTHON GAME PLAYER TO RUN FORWARD AND BACKWARD  . . . . . . . . . . . . . . . . . . .

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

eloc = []

eloc = [300, 0]

enemy_list = Level.bad(1, eloc )

gloc = []

tx   = 64

ty   = 64

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

        self.counter += 1

class Level():

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

        plat_list = pygame.sprite.Group()

        ploc = []

        i=0

        if lvl == 1:

        ploc.append((200, worldy - ty - 128, 3))

        ploc.append((300, worldy - ty - 256, 3))

        ploc.append((500, worldy - ty - 128 , 4))

        while i < len(ploc):

            j=0

            while j <= ploc[i][2]:

                plat =  Platform((ploc[i][0] + (j*tx)),ploc[i]

[1], tx, ty, 'tile.png')

                plat_list.add(plat)

                j = j + 1

            print('run' + str(i) + str(ploc[i]))

            i = i + 1

    if lvl == 2:

        print("Level " + str(lvl) )

    return plat_list

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 51

. . . . . . . . . . . . . . . . . . .  ENABLE YOUR PYTHON GAME PLAYER TO RUN FORWARD AND BACKWARD

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    # scroll the world forward

    if player.rect.x >= forwardx:

            scroll = player.rect.x - forwardx

            player.rect.x = forwardx

            for p in plat_list:

                    p.rect.x -= scroll

        for e in enemy_list:    # enemy scroll

            e.rect.x -= scroll  # enemy scroll

    # scroll the world backward

    if player.rect.x <= backwardx:

            scroll = backwardx - player.rect.x

            player.rect.x = backwardx

            for p in plat_list:

                   p.rect.x += scroll

        for e in enemy_list:    # enemy scroll

            e.rect.x += scroll  # enemy scroll

           

    world.blit(backdrop, backdropbox)

    player.update()

    player.gravity()

    player_list.draw(world)

    enemy_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    pygame.display.flip()

    clock.tick(fps)

Links
[1] https://www.python.org/
[2]  https://www.pygame.org/news

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.python.org/
https://www.pygame.org/news


52 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT SOME LOOT IN YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IF YOU’VE FOLLOWED along with the previous ar-
ticles in this series, then you know 

all the basics of programming video game mechanics. You 
can build upon these basics to create a fully functional vid-
eo game all your own. Following a “recipe” like the code 
samples in this series is helpful when you’re first learning, 
but eventually, the recipe becomes a constraint. It’s time 
to use the principles you’ve learned and apply them in 
new ways.

If that sounds easier said than done, this article demon-
strates an example of how to leverage what you already 
know for new purposes. Specifically, it covers how to imple-
ment a looting system using what you have already learned 
about platforms from previous lessons.

In most video games, you have the opportunity to “loot,” 
or collect treasures and other items within the game world. 
Loot usually increases your score or your health or provides 
information leading to your next quest.

Including loot in your game is similar to programming 
platforms. Like platforms, loot has no user controls, scrolls 
with the game world, and must check for collisions with the 
player sprite.

Before you begin, you must have a loot graphic, such as 
a coin or a treasure chest. If you’ve already downloaded my 
recommended tile set, the simplified-platformer-pack from 
Kenney.nl [1], then you can use a diamond or key from that.

Creating the loot function
Loot is so similar to platforms that you don’t even need a 
Loot class. You can just reuse the Platform class and call 
the results loot.

Since loot type and placement probably differ from lev-
el to level, create a new function called loot in your Lev-
el class, if you don’t already have one. Since loot items 
are not platforms, you must also create a new loot_list 
group and then add loot objects to it. As with platforms, 
ground, and enemies, this group is used when checking 
for collisions:

    def loot(lvl):

        if lvl == 1:

            loot_list = pygame.sprite.Group()

            loot = Platform(tx*9, ty*5, tx, ty, 'loot_1.png')

            loot_list.add(loot)

        if lvl == 2:

            print(lvl)

        return loot_list

In this code, I express the location of the loot as multiples of 
the tile size: tx on the X axis and ty for the Y axis. I do this 
because i mapped my level on graph paper, so it’s easy to 
just count the squares on my map and then multiply it by the 
tile size, rather than calculating the pixel count. This is espe-
cially true for very long levels. You can hard code the pixel 
count, if you prefer.

You can add as many loot objects as you like; just remem-
ber to add each one to your loot list. The arguments for the 
Platform class are the X position, the Y position, the width 
and height of the loot sprite (it’s usually easiest to keep your 
loot sprite the same size as all other tiles), and the image you 
want to use as loot. Placement of loot can be just as complex 
as mapping platforms, so use the level design document you 
created when creating the level.

Call your new loot function in the Setup section of your 
script. In the following code, the first three lines are for con-
text, so just add the fourth:

loot_list = Level.loot(1)

As you know by now, the loot won’t get drawn to the screen un-
less you include it in your main loop. Add this line to your loop:

    loot_list.draw(world)

Launch your game to see what happens.

Put some loot in your Python 
platformer game
Give your players some treasures to collect and boost their score in this installment 
on programming video games with Python's Pygame module.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kenney.nl/assets/simplified-platformer-pack


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 53

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT SOME LOOT IN YOUR PYTHON PLATFORMER GAME

Your loot objects are spawned, but they don’t do anything 
when your player runs into them, nor do they scroll when 
your player runs past them. Fix these issues next.

Scrolling loot
Like platforms, loot has to scroll when the player moves 
through the game world. The logic is identical to platform 
scrolling. To scroll the loot forward, add the last two lines:

        for e in enemy_list:

            e.rect.x -= scroll

        for l in loot_list:     # loot scroll

            l.rect.x -= scroll  # loot scroll

To scroll it backward, add the last two lines:

        for e in enemy_list:

            e.rect.x += scroll

        for l in loot_list:     # loot scroll

            l.rect.x += scroll  # loot scroll

Launch your game again to see that your loot objects now act 
like they’re in the game world instead of just painted on top of it.

Detecting collisions
As with platforms and enemies, you can check for collisions 
between loot and your player. The logic is the same as other 
collisions, except that a hit doesn’t (necessarily) affect grav-
ity or health. Instead, a hit causes the loot to disappear and 
increment the player’s score.

When your player touches a loot object, you can remove 
that object from the loot_list. This means that when your 
main loop redraws all loot items in loot_list, it won’t re-
draw that particular object, so it will look like the player has 
grabbed the loot.

Add the following code above the platform collision detec-
tion in the update function of your Player class (the last line 
is just for context):

                loot_hit_list =  pygame.sprite.spritecollide(self, 

loot_list, False)

                for loot in loot_hit_list:

                        loot_list.remove(loot)

                        self.score += 1

                print(self.score)

 

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

Not only do you remove the loot object from its group 
when a collision happens, but you also award your player 
a bump in score. You haven’t created a score variable yet, 
so add that to your player’s properties, created in the __
init__ function of the Player class. In the following code, 
the first two lines are for context, so just add the score 
variable:

        self.frame = 0

        self.health = 10

        self.score = 0

Applying what you know
As you can see, you’ve got all the basics. All you have to 
do now is use what you know in new ways. For instance, 
if you haven’t already placed your enemies in a sensible 
place, take some time to do that now using the same method 
you’ve used to place platforms and loot.

There are a few more tips in the next article, but in the 
meantime, use what you’ve learned to make a few simple, 
single-level games. Limiting the scope of what you are trying 
to create is important so that you don’t overwhelm yourself. 
It also makes it easier to end up with a finished product that 
looks and feels finished.

Here’s all the code you’ve written for this Python platform-
er so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


54 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT SOME LOOT IN YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

            self.image = self.images[0]
            self.rect = self.image.get_rect()

    def gravity(self):
        if self.is_jumping:
            self.movey += 3.2

    def control(self, x, y):
        """
        control player movement
        """
        self.movex += x

    def jump(self):
        if self.is_jumping is False:
            self.is_falling = False
            self.is_jumping = True

    def update(self):
        """
        Update sprite position
        """

        # moving left
        if self.movex < 0:
            self.is_jumping = True
            self.frame += 1
            if self.frame > 3 * ani:
                self.frame = 0
            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right
        if self.movex > 0:
            self.is_jumping = True
            self.frame += 1
            if self.frame > 3 * ani:
                self.frame = 0
            self.image = self.images[self.frame // ani]

        # collisions
        enemy_hit_list =  pygame.sprite.spritecollide(self, 

enemy_list, False)
        for enemy in enemy_hit_list:
            self.health -= 1
            # print(self.health)

        ground_hit_list =  pygame.sprite.spritecollide(self, 
ground_list, False)

        for g in ground_hit_list:
            self.movey = 0
            self.rect.bottom = g.rect.top
            self.is_jumping = False  # stop jumping

        # fall off the world
        if self.rect.y > worldy:
            self.health -=1
            print(self.health)

import pygame
import sys
import os

'''
Variables
'''

worldx = 960
worldy = 720
fps = 40  
ani = 4  
world = pygame.display.set_mode([worldx, worldy])
forwardx  = 600
backwardx = 120

BLUE = (25, 25, 200)
BLACK = (23, 23, 23)
WHITE = (254, 254, 254)
ALPHA = (0, 255, 0)

'''
Objects
'''

# x location, y location, img width, img height, img file
class Platform(pygame.sprite.Sprite):
    def __init__(self, xloc, yloc, imgw, imgh, img):
        pygame.sprite.Sprite.__init__(self)
        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()
        self.image.convert_alpha()
        self.image.set_colorkey(ALPHA)
        self.rect = self.image.get_rect()
        self.rect.y = yloc
        self.rect.x = xloc

class Player(pygame.sprite.Sprite):
    """
    Spawn a player
    """

    def __init__(self):
        pygame.sprite.Sprite.__init__(self)
        self.movex = 0
        self.movey = 0
        self.frame = 0
        self.health = 10
        self.is_jumping = True
        self.is_falling = True
        self.images = []
        for i in range(1, 5):
            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()
            img.convert_alpha()
            img.set_colorkey(ALPHA)
            self.images.append(img)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 55

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PUT SOME LOOT IN YOUR PYTHON PLATFORMER GAME

            self.rect.x = tx
            self.rect.y = ty

        plat_hit_list =  pygame.sprite.spritecollide(self,  
plat_list, False)

        for p in plat_hit_list:
            self.is_jumping = False  # stop jumping
            self.movey = 0
            if self.rect.bottom <= p.rect.bottom:
               self.rect.bottom = p.rect.top
            else:
               self.movey += 3.2

        if self.is_jumping and self.is_falling is False:
            self.is_falling = True
            self.movey -= 33  # how high to jump

        loot_hit_list =  pygame.sprite.spritecollide(self, loot_
list, False)

        for loot in loot_hit_list:
                loot_list.remove(loot)
                self.score += 1
                print(self.score)
 
        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        self.rect.x += self.movex
        self.rect.y += self.movey

class Enemy(pygame.sprite.Sprite):
    """
    Spawn an enemy
    """

    def __init__(self, x, y, img):
        pygame.sprite.Sprite.__init__(self)
        self.image = pygame.image.load(os.path.join('images',img))
        self.image.convert_alpha()
        self.image.set_colorkey(ALPHA)
        self.rect = self.image.get_rect()
        self.rect.x = x
        self.rect.y = y
        self.counter = 0

    def move(self):
        '''
        enemy movement
        '''
        distance = 80
        speed = 8

        if self.counter >= 0 and self.counter <= distance:
            self.rect.x += speed
        elif  self.counter >= distance and self.counter  

<= distance*2:
            self.rect.x -= speed
        else:

            self.counter = 0

        self.counter += 1

class Level():
    def ground(lvl, gloc, tx, ty):
        ground_list = pygame.sprite.Group()
        i = 0
        if lvl == 1:
            while i < len(gloc):
                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')
                ground_list.add(ground)
                i = i + 1

        if lvl == 2:
            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):
        if lvl == 1:
            enemy = Enemy(eloc[0],eloc[1],'enemy.png')
            enemy_list = pygame.sprite.Group()
            enemy_list.add(enemy)
        if lvl == 2:
            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file
    def platform(lvl,tx,ty):
        plat_list = pygame.sprite.Group()
        ploc = []
        i=0
        if lvl == 1:
            ploc.append((200, worldy - ty - 128, 3))
            ploc.append((300, worldy - ty - 256, 3))
            ploc.append((500, worldy - ty - 128 , 4))
            while i < len(ploc):
                j=0
                while j <= ploc[i][2]:
                     plat =  Platform((ploc[i][0] + (j*tx)), 

ploc[i][1], tx, ty, 'tile.png')
                    plat_list.add(plat)
                    j = j + 1
                print('run' + str(i) + str(ploc[i]))
                i = i + 1

        if lvl == 2:
            print("Level " + str(lvl) )

        return plat_list

    def loot(lvl):
        if lvl == 1:
            loot_list = pygame.sprite.Group()

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


56 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

PUT SOME LOOT IN YOUR PYTHON PLATFORMER GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

        if event.type == pygame.KEYDOWN:
            if event.key == ord('q'):
                pygame.quit()
                try:
                    sys.exit()
                finally:
                    main = False
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(-steps, 0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(steps, 0)
            if event.key == pygame.K_UP or event.key == ord('w'):
                print('jump')

        if event.type == pygame.KEYUP:
            if event.key == pygame.K_LEFT or event.key == ord('a'):
                player.control(steps, 0)
            if event.key == pygame.K_RIGHT or event.key == ord('d'):
                player.control(-steps, 0)

    # scroll the world forward
    if player.rect.x >= forwardx:
            scroll = player.rect.x - forwardx
            player.rect.x = forwardx
            for p in plat_list:
                    p.rect.x -= scroll
        for e in enemy_list:
            e.rect.x -= scroll

    # scroll the world backward
    if player.rect.x <= backwardx:
            scroll = backwardx - player.rect.x
            player.rect.x = backwardx
            for p in plat_list:
                   p.rect.x += scroll
        for e in enemy_list:
            e.rect.x += scroll
        for l in loot_list:
            l.rect.x += scroll

    world.blit(backdrop, backdropbox)
    player.update()
    player.gravity()
    player_list.draw(world)
    enemy_list.draw(world)
    loot_list.draw(world)
    ground_list.draw(world)
    plat_list.draw(world)
    for e in enemy_list:
        e.move()
    pygame.display.flip()
    clock.tick(fps)

Links
[1] https://kenney.nl/assets/simplified-platformer-pack

            loot = Platform(tx*5, ty*5, tx, ty, 'loot_1.png')
            loot_list.add(loot)

        if lvl == 2:
            print(lvl)

        return loot_list

'''
Setup
'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))
clock = pygame.time.Clock()
pygame.init()
backdropbox = world.get_rect()
main = True

player = Player()  # spawn player
player.rect.x = 0  # go to x
player.rect.y = 30  # go to y
player_list = pygame.sprite.Group()
player_list.add(player)
steps = 10

eloc = []
eloc = [300, 0]
enemy_list = Level.bad(1, eloc )

gloc = []
tx   = 64
ty   = 64

i = 0
while i <= (worldx / tx) + tx:
    gloc.append(i * tx)
    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)
plat_list = Level.platform(1, tx, ty)
enemy_list = Level.bad( 1, eloc )
loot_list = Level.loot(1)

'''
Main Loop
'''

while main:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit()
            try:
                sys.exit()
            finally:
                main = False

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kenney.nl/assets/simplified-platformer-pack


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 57

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD SCOREKEEPING TO YOUR PYTHON GAME

IF YOU’VE FOLLOWED along with this series, you’ve 
learned all the essential syntax and 

patterns you need to create a video game with Python. How-
ever, it still lacks one vital component. This component isn’t 
important just for programming games in Python; it’s some-
thing you must master no matter what branch of computing 
you explore: Learning new tricks as a programmer by read-
ing a language’s or library’s documentation.

Luckily, the fact that you’re reading this article is a sign 
that you’re comfortable with documentation. For the practi-
cal purpose of making your platform game more polished, in 
this article, you will add a score and health display to your 
game screen. But the not-so-secret agenda of this lesson is 
to teach you how to find out what a library offers and how you 
can use new features.

Displaying the score in Pygame
Now that you have loot that your player can collect, there’s every 
reason to keep score so that your player sees just how much 
loot they’ve collected. You can also track the player’s health so 
that when they hit one of the enemies, it has a consequence.

You already have variables that track score and health, but 
it all happens in the background. This article teaches you to 
display these statistics in a font of your choice on the game 
screen during gameplay.

Read the docs
Most Python modules have documentation, and even those 
that do not can be minimally documented by Python’s Help 
function. Pygame’s main page [1] links to its documentation. 
However, Pygame is a big module with a lot of documen-
tation, and its docs aren’t exactly written in the same ap-
proachable (and friendly and elucidating and helpful) narra-
tive style as articles on Opensource.com. They’re technical 
documents, and they list each class and function available in 
the module, what kind of inputs each expects, and so on. If 
you’re not comfortable referring to descriptions of code com-
ponents, this can be overwhelming.

The first thing to do, before bothering with a library’s docu-
mentation, is to think about what you are trying to achieve. In 
this case, you want to display the player’s score and health 
on the screen.

Once you’ve determined your desired outcome, think 
about what components are required for it. You can 
think of this in terms of variables and functions or, if that 
doesn’t come naturally to you yet, you can think generi-
cally. You probably recognize that displaying a score re-
quires some text, which you want Pygame to draw on 
the screen. If you think it through, you might realize that 
it’s not very different from rendering a player or loot or a 
platform on screen.

Technically, you could use graphics of numbers and 
have Pygame display those. It’s not the easiest way to 
achieve your goal, but if it’s the only way you know, then 
it’s a valid way. However, if you refer to Pygame’s docs, 
you see that one of the modules listed is font, which is 
Pygame’s method for making printing text on the screen 
as easy as typing.

Deciphering technical documentation
The font documentation page starts with pygame.font.init(), 
which it lists as the function that is used to initialize the font 
module. It’s called automatically by pygame.init(), which 
you already call in your code. Once again, you’ve reached 
a point that that’s technically good enough. While you don’t 
know how yet, you know that you can use the pygame.font 
functions to print text on the screen.

If you read further, however, you find that there’s yet an 
even better way to print fonts. The pygame.freetype module 
is described in the docs this way:

The pygame.freetype module is a replacement 
for pygame.fontpygame module for loading and 
rendering fonts. It has all of the functionality of 
the original, plus many new features.

Add scorekeeping to your 
Python game
In the eleventh article in this series on programming with Python’s Pygame module, 
display your game player’s score when they collect loot or take damage.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://pygame.org/news


58 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD SCOREKEEPING TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sites that specialize in free and legal fonts include:

•  Font Library
•  Font Squirrel
•  League of Moveable Type

When you find a font that you like, download it. Extract the 
ZIP or TAR [2] file and move the .ttf or .otf file into the fonts 
folder in your game project directory.

You aren’t installing the font on your computer. You’re 
just placing it in your game’s fonts folder so that Pygame 
can use it. You can install the font on your computer if you 
want, but it’s not necessary. The important thing is to have 
it in your game directory, so Pygame can “trace” it onto 
the screen.

If the font file has a complicated name with spaces or spe-
cial characters, just rename it. The filename is completely 
arbitrary, and the simpler it is, the easier it is for you to type 
into your code.

Using a font in Pygame
Now tell Pygame about your font. From the documentation, 
you know that you’ll get a font object in return when you pro-
vide at least the path to a font file to pygame.freetype.Font 
(the docs state explicitly that all remaining attributes are op-
tional):

Font(file, size=0, font_index=0, resolution=0, ucs4=False) -> Font

Create a new variable called myfont to serve as your font 
in the game, and place the results of the Font function into 
that variable. This example uses the amazdoom.ttf font, but 
you can use whatever font you want. Place this code in your 
Setup section:

f ont_path = os.path.join(os.path.dirname(os.path.realpath 

(__file__)),"fonts","amazdoom.ttf")

font_size = tx

pygame.freetype.init()

myfont = pygame.freetype.Font(font_path, font_size)

Displaying text in Pygame
Now that you’ve created a font object, you need a function to 
draw the text you want onto the screen. This is the same principle 
you used to draw the background and platforms in your game.

First, create a function, and use the myfont object to cre-
ate some text, setting the color to some RGB value. This 
must be a global function; it does not belong to any specific 
class. Place it in the objects section of your code, but keep 
it as a stand-alone function:

def stats(score,health):

    myfont.render_to( world, (4, 4), "Score:"+str(score), BLACK, 

None, size=64)

Further down the pygame.freetype documentation page, 
there’s some sample code:

import pygame

import pygame.freetype

Your code already imports Pygame, but modify your import 
statements to include the Freetype module:

import pygame

import sys

import os

import pygame.freetype

Using a font in Pygame
From the description of the font modules, it’s clear that Pyg-
ame uses a font, whether it’s one you provide or a default 
font built into Pygame, to render text on the screen. Scroll 
through the pygame.freetype documentation to find the 
pygame.freetype.Font function:

pygame.freetype.Font

Create a new Font instance from a supported font file.

Font(file, size=0, font_index=0, resolution=0, ucs4=False) -> Font

pygame.freetype.Font.name

  Proper font name.

pygame.freetype.Font.path

  Font file path

pygame.freetype.Font.size

  The default point size used in rendering

This describes how to construct a font “object” in Pygame. It may 
not feel natural to you to think of a simple object onscreen as 
the combination of several code attributes, but it’s very similar to 
how you built your hero and enemy sprites. Instead of an image 
file, you need a font file. Once you have a font file, you can cre-
ate a font object in your code with the pygame.freetype.Font 
function and then use that object to render text on the screen.

Asset management
Because not everyone in the world has the exact same fonts 
on their computers, it’s important to bundle your chosen font 
with your game. To bundle a font, first create a new directory 
in your game folder, right along with the directory you creat-
ed for your images. Call it fonts.

Even though several fonts come with your computer, it’s not 
legal to give those fonts away. It seems strange, but that’s 
how the law works. If you want to ship a font with your game, 
you must find an open source or Creative Commons font that 
permits you to give the font away along with your game.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://fontlibrary.org/
https://www.fontsquirrel.com/
https://www.theleagueofmoveabletype.com/
https://opensource.com/article/17/7/how-unzip-targz-file


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD SCOREKEEPING TO YOUR PYTHON GAME

    myfont.render_to( world, (4, 72), "Health:"+str(health), 

BLACK, None, size=64)

Of course, you know by now that nothing happens in your 
game if it’s not in the Main loop, so add a call to your stats 
function near the bottom of the file:

    stats(player.score,player.health) # draw text

Try your game. If you’ve been following the sample code in 
this article exactly, you’ll get an error when you try to launch 
the game now.

Interpreting errors
Errors are important to programmers. When something fails 
in your code, one of the best ways to understand why is 
by reading the error output. Unfortunately, Python doesn’t 
communicate the same way a human does. While it does 
have relatively friendly errors, you still have to interpret 
what you’re seeing.

In this case, launching the game produces this output:

Traceback (most recent call last):

  Fi le "/home/tux/PycharmProjects/game_001/main.py", line 41, 

in <module>

    font_size = tx

NameError: name 'tx' is not defined

Python is aserting that the variable tx is not defined. You 
know this isn’t true, because you’ve used tx in several plac-
es by now and it’s worked as expected.

But Python also cites a line number. This is the line that 
caused Python to stop executing the code. It is not necessar-
ily the line containing the error.

Armed with this knowledge, you can look at your code in 
an attempt to understand what has failed.

Line 41 attempts to set the font size to the value of tx. 
However, reading through the file in reverse, up from line 41, 
you might notice that tx (and ty) are not listed. In fact, tx and 
ty were placed haphazardly in your setup section because, 
at the time, it seemed easy and logical to place them along 
with other important tile information.

Moving the tx and ty lines from your setup section to some 
line above line 41 fixes the error.

When you entcounter errors in Python, take note of the 
hints it provides, and then read your source code carefully. 
It can take time to find an error, even for experienced pro-
grammers, but the better you understand Python the easier 
it becomes.

Running the game
When the player collects loot, the score goes up. When 
the player gets hit by an enemy, health goes down. 
Success!

There is one problem, though. When a player gets hit by an 
enemy, health goes way down, and that’s not fair. You have 
just discovered a non-fatal bug. Non-fatal bugs are those lit-
tle problems in applications that don’t keep the application 
from starting up or even from working (mostly), but they ei-
ther don’t make sense, or they annoy the user. Here’s how 
to fix this one.

Fixing the health counter
The problem with the current health point system is that 
health is subtracted for every tick of the Pygame clock 
that the enemy is touching the player. That means that 
a slow-moving enemy can take a player down to –200 
health in just one encounter, and that’s not fair. You could, 
of course, just give your player a starting health score of 
10,000 and not worry about it; that would work, and possi-
bly no one would mind. But there is a better way.

Currently, your code detects when a player and an enemy 
collide. The fix for the health-point problem is to detect two 
separate events: when the player and enemy collide and, 
once they have collided, when they stop colliding.

First, in your Player class, create a variable to represent 
when a player and enemy have collided:

        self.frame = 0

        self.health = 10

        self.damage = 0

In the update function of your Player class, remove this block 
of code:

        for enemy in enemy_hit_list:

            self.health -= 1

            #print(self.health)

And in its place, check for collision as long as the player is 
not currently being hit:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


60 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD SCOREKEEPING TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now that you have a way for your player to know their score 
and health, you can make certain events occur when your 
player reaches certain milestones. For instance, maybe 
there’s a special loot item that restores some health points. 
And maybe a player who reaches zero health points has to 
start back at the beginning of a level.

You can check for these events in your code and manipu-
late your game world accordingly.

Level up
You already know how to do so much. Now it’s time to 
level up your skills. Go skim the documentation for new 
tricks and try them out on your own. Programming is a 
skill you develop, so don’t stop with this project. Invent 
another game, or a useful application, or just use Python 
to experiment around with crazy ideas. The more you use 
it, the more comfortable you get with it, and eventually it’ll 
be second nature.

Keep it going, and keep it open!
Here’s all the code so far:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

        if self.damage == 0:

            for enemy in enemy_hit_list:

                if not self.rect.contains(enemy):

                    self.damage = self.rect.colliderect(enemy)

You might see similarities between the block you deleted 
and the one you just added. They’re both doing the same 
job, but the new code is more complex. Most importantly, 
the new code runs only if the player is not currently being 
hit. That means that this code runs once when a player 
and enemy collide and not constantly for as long as the 
collision happens, the way it used to.

The new code uses two new Pygame functions. The self.
rect.contains function checks to see if an enemy is cur-
rently within the player’s bounding box, and self.rect.colli-
derect sets your new self.damage variable to one when it 
is true, no matter how many times it is true.

Now even three seconds of getting hit by an enemy still 
looks like one hit to Pygame.

I discovered these functions by reading through Pyg-
ame’s documentation. You don’t have to read all the docs 
at once, and you don’t have to read every word of each 
function. However, it’s important to spend time with the 
documentation of a new library or module that you’re 
using; otherwise, you run a high risk of reinventing the 
wheel. Don’t spend an afternoon trying to hack together 
a solution to something that’s already been solved by the 
framework you’re using. Read the docs, find the functions, 
and benefit from the work of others!

Finally, add another block of code to detect when the play-
er and the enemy are no longer touching. Then and only 
then, subtract one point of health from the player.

        if self.damage == 1:

            idx = self.rect.collidelist(enemy_hit_list)

            if idx == -1:

                self.damage = 0   # set damage back to 0

                self.health -= 1  # subtract 1 hp

Notice that this new code gets triggered only when the player 
has been hit. That means this code doesn’t run while your 
player is running around your game world exploring or col-
lecting loot. It only runs when the self.damage variable gets 
activated.

When the code runs, it uses self.rect.collidelist to 
see whether or not the player is still touching an enemy 
in your enemy list (collidelist returns negative one when 
it detects no collision). Once it is not touching an enemy, 
it’s time to pay the self.damage debt: deactivate the self.
damage variable by setting it back to zero and subtract 
one point of health.

Try your game now.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 61

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD SCOREKEEPING TO YOUR PYTHON GAME

import pygame

import pygame.freetype

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

forwardx  = 600

backwardx = 120

BLUE = (80, 80, 155)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

tx = 64

ty = 64

f ont_path = os.path.join(os.path.dirname(os.path.realpath 

(__file__)),"fonts","amazdoom.ttf")

font_size = tx

pygame.freetype.init()

myfont = pygame.freetype.Font(font_path, font_size)

'''

Objects

'''

def stats(score,health):

    myfont.render_to( world, (4, 4), "Score:"+str(score), BLUE, 

None, size=64)

    myfont.render_to( world, (4, 72), "Health:"+str(health), 

BLUE, None, size=64)

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.damage = 0

        self.score = 0

        self.is_jumping = True

        self.is_falling = True

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'hero' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

    def gravity(self):

        if self.is_jumping:

            self.movey += 3.2

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

    def jump(self):

        if self.is_jumping is False:

            self.is_falling = False

            self.is_jumping = True

    def update(self):

        """

        Update sprite position

        """

        # moving left

        if self.movex < 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


62 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD SCOREKEEPING TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

                print(self.score)

 

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        self.rect.x += self.movex

        self.rect.y += self.movey

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self, x, y, img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

class Level:

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        # moving right

        if self.movex > 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image = self.images[self.frame // ani]

        # collisions

        enemy_hit_list =  pygame.sprite.spritecollide(self, 

enemy_list, False)

        if self.damage == 0:

            for enemy in enemy_hit_list:

                if not self.rect.contains(enemy):

                    self.damage = self.rect.colliderect(enemy)

        if self.damage == 1:

            idx = self.rect.collidelist(enemy_hit_list)

            if idx == -1:

                self.damage = 0   # set damage back to 0

                self.health -= 1  # subtract 1 hp

        ground_hit_list =  pygame.sprite.spritecollide(self, 

ground_list, False)

        for g in ground_hit_list:

            self.movey = 0

            self.rect.bottom = g.rect.top

            self.is_jumping = False  # stop jumping

        # fall off the world

        if self.rect.y > worldy:

            self.health -=1

            print(self.health)

            self.rect.x = tx

            self.rect.y = ty

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        for p in plat_hit_list:

            self.is_jumping = False  # stop jumping

            self.movey = 0

            if self.rect.bottom <= p.rect.bottom:

               self.rect.bottom = p.rect.top

            else:

               self.movey += 3.2

        if self.is_jumping and self.is_falling is False:

            self.is_falling = True

            self.movey -= 33  # how high to jump

        loot_hit_list =  pygame.sprite.spritecollide(self, loot_

list, False)

        for loot in loot_hit_list:

                loot_list.remove(loot)

                self.score += 1

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD SCOREKEEPING TO YOUR PYTHON GAME

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

eloc = []

eloc = [300, worldy-ty-80]

enemy_list = Level.bad(1, eloc )

gloc = []

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

enemy_list = Level.bad( 1, eloc )

loot_list = Level.loot(1)

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

        plat_list = pygame.sprite.Group()

        ploc = []

        i=0

        if lvl == 1:

            ploc.append((200, worldy - ty - 128, 3))

            ploc.append((300, worldy - ty - 256, 3))

            ploc.append((500, worldy - ty - 128 , 4))

            while i < len(ploc):

                j=0

                while j <= ploc[i][2]:

                     plat =  Platform((ploc[i][0] + (j*tx)), 

ploc[i][1], tx, ty, 'tile.png')

                    plat_list.add(plat)

                    j = j + 1

                print('run' + str(i) + str(ploc[i]))

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl))

        return plat_list

    def loot(lvl):

        if lvl == 1:

            loot_list = pygame.sprite.Group()

            loot = Platform(tx*5, ty*5, tx, ty, 'loot_1.png')

            loot_list.add(loot)

        if lvl == 2:

            print(lvl)

        return loot_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


64 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD SCOREKEEPING TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

                   p.rect.x += scroll

        for e in enemy_list:

            e.rect.x += scroll

        for l in loot_list:

            l.rect.x += scroll

    world.blit(backdrop, backdropbox)

    player.update()

    player.gravity()

    player_list.draw(world)

    enemy_list.draw(world)

    loot_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    stats(player.score, player.health)

    pygame.display.flip()

    clock.tick(fps)

Links
[1]  http://pygame.org/news
[2]  https://opensource.com/article/17/7/how-unzip-targz-file

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

    # scroll the world forward

    if player.rect.x >= forwardx:

            scroll = player.rect.x - forwardx

            player.rect.x = forwardx

            for p in plat_list:

                p.rect.x -= scroll

        for e in enemy_list:

            e.rect.x -= scroll

        for l in loot_list:

            l.rect.x -= scroll

    # scroll the world backward

    if player.rect.x <= backwardx:

            scroll = backwardx - player.rect.x

            player.rect.x = backwardx

            for p in plat_list:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://pygame.org/news
https://opensource.com/article/17/7/how-unzip-targz-file


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 65

MY PREVIOUS ARTICLE was meant to be the fi-
nal article in this series, and it 

encouraged you to go program your own additions to this 
game. Many of you did! I got emails asking for help with a 
common mechanic that I hadn’t yet covered: combat. After 
all, jumping to avoid baddies is one thing, but sometimes it’s 
awfully satisfying to just make them go away. It’s common in 
video games to throw something at your enemies, whether 
it’s a ball of fire, an arrow, a bolt of lightning, or whatever else 
fits the game.

Unlike anything you have programmed for your platformer 
game in this series so far, throwable items have a time to 
live. Once you throw an object, it’s expected to travel some 
distance and then disappear. If it’s an arrow or something 
like that, it may disappear when it passes the edge of the 
screen. If it’s a fireball or a bolt of lightning, it might fizzle out 
after some amount of time.

That means each time a throwable item is spawned, a 
unique measure of its lifespan must also be spawned. To in-
troduce this concept, this article demonstrates how to throw 
only one item at a time. (In other words, only one throwable 
item may exist at a time.) On the one hand, this is a game 
limitation, but on the other hand, it is a game mechanic in 
itself. Your player won’t be able to throw 50 fireballs at once, 
since you only allow one at a time, so it becomes a challenge 
for your player to time when they release a fireball to try to 
hit an enemy. And behind the scenes, this also keeps your 
code simple.

If you want to enable more throwable items at once, chal-
lenge yourself after you finish this tutorial by building on the 
knowledge you gain.

Create the throwable class
If you followed along with the other articles in this series, 
you should be familiar with the basic __init__ function when 
spawning a new object on the screen. It’s the same function 
you used for spawning your player [1] and your enemies [2]. 
Here’s an __init__ function to spawn a throwable object:

class Throwable(pygame.sprite.Sprite):

    """

    Spawn a throwable object

    """

    def __init__(self, x, y, img, throw):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect   = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.firing = throw

The primary difference in this function compared to your 
Player class or Enemy class __init__ function is that it has 
a self.firing variable. This variable keeps track of whether 
or not a throwable object is currently alive on screen, so it 
stands to reason that when a throwable object is created, the 
variable is set to 1.

Measure time to live
Next, just as with Player and Enemy, you need an update 
function so that the throwable object moves on its own once 
it’s thrown into the air toward an enemy.

The easiest way to determine the lifespan of a throwable 
object is to detect when it goes off-screen. Which screen 
edge you need to monitor depends on the physics of your 
throwable object.

•   If your player is throwing something that travels quickly 
along the horizontal axis, like a crossbow bolt or arrow or a 
very fast magical force, then you want to monitor the hori-
zontal limit of your game screen. This is defined by worldx.

•   If your player is throwing something that travels vertically 
or both horizontally and vertically, then you must monitor 
the vertical limit of your game screen. This is defined by 
worldy.

Add throwing mechanics  
to your Python game
Running around avoiding enemies is one thing. Fighting back is another. Learn 
how in the 12th article in this series on creating a platformer in Pygame.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD THROWING MECHANICS TO YOUR PYTHON GAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/18/5/pygame-enemy


66 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD THROWING MECHANICS TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, add player controls. Currently, you have no firepower 
trigger. There are two states for a key on a keyboard: the key 
can be down, or the key can be up. For movement, you use 
both: pressing down starts the player moving, and releasing 
the key (the key is up) stops the player. Firing needs only 
one signal. It’s a matter of taste as to which key event (a key 
press or a key release) you use to trigger your throwable 
object.

In this code block, the first two lines are for context:

            if event.key == pygame.K_UP or event.key == ord('w'):

                player.jump(platform_list)

            if event.key == pygame.K_SPACE:

                if not fire.firing:

                    fire =  Throwable(player.rect.x,player.

rect.y,'fire.png',1)

                    firepower.add(fire)

Unlike the fireball you created in your setup section, you use 
a 1 to set self.firing as unavailable.

Finally, you must update and draw your throwable object. 
The order of this matters, so put this code between your ex-
isting enemy.move and player_list.draw lines:

    enemy.move()  # context

    if fire.firing:

        fire.update(worldy)

        firepower.draw(world)

    player_list.draw(screen)  # context

    enemy_list.draw(screen)   # context

Notice that these updates are performed only if the self.
firing variable is set to 1. If it is set to 0, then fire.firing is 
not true, and the updates are skipped. If you tried to do these 
updates, no matter what, your game would crash because 
there wouldn’t be a fire object to update or draw.

Launch your game and try to throw your weapon.

Detect collisions
If you played your game with the new throwing mechan-
ic, you probably noticed that you can throw objects, but it 
doesn’t have any effect on your foes.

The reason is that your enemies do not check for a col-
lision. An enemy can be hit by your throwable object and 
never know about it.

You’ve already done collision detection in your Player 
class, and this is very similar. In your Enemy class, add a new 
update function:

    def update(self,firepower, enemy_list):

        """

        detect firepower collision

        """

This example assumes your throwable object goes a little 
forward and eventually falls to the ground. The object does 
not bounce off the ground, though, and continues to fall off 
the screen. You can try different settings to see what fits your 
game best:

    def update(self,worldy):

        '''

        throw physics

        '''

        if self.rect.y < worldy: #vertical axis

            self.rect.x  += 15 #how fast it moves forward

            self.rect.y  += 5  #how fast it falls

        else:

            self.kill()     #remove throwable object

            self.firing = 0 #free up firing slot

To make your throwable object move faster, increase the 
momentum of the self.rect values.

If the throwable object is off-screen, then the object is de-
stroyed, freeing up the RAM that it had occupied. In addition, 
self.firing is set back to 0 to allow your player to take an-
other shot.

Set up your throwable object
Just like with your player and enemies, you must create a 
sprite group in your setup section to hold the throwable ob-
ject.

Additionally, you must create an inactive throwable object 
to start the game with. If there isn’t a throwable object when 
the game starts, the first time a player attempts to throw a 
weapon, it will fail.

This example assumes your player starts with a fireball as 
a weapon, so each instance of a throwable object is desig-
nated by the fire variable. In later levels, as the player ac-
quires new skills, you could introduce a new variable using 
a different image but leveraging the same Throwable class.

In this block of code, the first two lines are already in your 
code, so don’t retype them:

player_list = pygame.sprite.Group() #context

player_list.add(player)             #context

fire = Throwable(player.rect.x,player.rect.y,'fire.png',0)

firepower = pygame.sprite.Group()

Notice that a throwable item starts at the same location as 
the player. That makes it look like the throwable item is com-
ing from the player. The first time the fireball is generated, a 
0 is used so that self.firing shows as available.

Get throwing in the main loop
Code that doesn’t appear in the main loop will not be used in 
the game, so you need to add a few things in your main loop 
to get your throwable object into your game world.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 67

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD THROWING MECHANICS TO YOUR PYTHON GAME

        fire_hit_list =   pygame.sprite.

spritecollide(self,firepower,False)

        for fire in fire_hit_list:

            enemy_list.remove(self)

The code is simple. Each enemy object checks to see if it 
has been hit by the firepower sprite group. If it has, then the 
enemy is removed from the enemy group and disappears.

To integrate that function into your game, call the function 
in your new firing block in the main loop:

    if fire.firing:                             # context

        fire.update(worldy)                    # context

        firepower.draw(screen)                  # context

        enemy_list.update(firepower,enemy_list) # update enemy

You can try your game now, and most everything works as 
expected. There’s still one problem, though, and that’s the 
direction of the throw.

Change the throw mechanic direction
Currently, your hero’s fireball moves only to the right. This 
is because the update function of the Throwable class adds 
pixels to the position of the fireball, and in Pygame, a larger 
number on the X-axis means movement toward the right of 
the screen. When your hero turns the other way, you proba-
bly want it to throw its fireball to the left.

By this point, you know how to implement this, at least 
technically. However, the easiest solution uses a variable in 
what may be a new way for you. Generically, you can “set 
a flag” (sometimes also termed “flip a bit”) to indicate the di-
rection your hero is facing. Once you do that, you can check 
that variable to learn whether the fireball needs to move left 
or right.

First, create a new variable in your Player class to repre-
sent which direction your hero is facing. Because my hero 
faces right naturally, I treat that as the default:

        self.score = 0

        self.facing_right = True  # add this

        self.is_jumping = True

When this variable is True, your hero sprite is facing right. It 
must be set anew every time the player changes the hero’s 
direction, so do that in your main loop on the relevant keyup 
events:

        if event.type == pygame.KEYUP:

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

                player.facing_right = False  # add this line

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

                player.facing_right = True  # add this line

Finally, change the update function of your Throwable class 
to check whether the hero is facing right or not and to add 
or subtract pixels from the fireball’s position as appropriate:

        if self.rect.y < worldy:

            if player.facing_right:

                self.rect.x += 15

            else:

                self.rect.x -= 15

            self.rect.y += 5

Try your game again and clear your world of some baddies.

(Seth Kenlon, CC BY-SA 4.0)

As a bonus challenge, try incrementing your player’s score 
whenever an enemy is vanquished.

The complete code:

#!/usr/bin/env python3

# by Seth Kenlon

# GPLv3

# This program is free software: you can redistribute it and/or

# modify it under the terms of the GNU General Public License as

# published by the Free Software Foundation, either version 3 of

# the License, or (at your option) any later version.

#

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.  If not, see 

# <http://www.gnu.org/licenses/>.

import pygame

import pygame.freetype

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/


68 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD THROWING MECHANICS TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    def update(self,worldy):

        '''

        throw physics

        '''

        if self.rect.y < worldy:

            if player.facing_right:

            self.rect.x  += 15

            else:

                self.rect.x -= 15

            self.rect.y  += 5  

        else:

            self.kill()    

            self.firing = 0

# x location, y location, img width, img height, img file

class Platform(pygame.sprite.Sprite):

    def __init__(self, xloc, yloc, imgw, imgh, img):

        pygame.sprite.Sprite.__init__(self)

        self.image =  pygame.image.load(os.path.join 

('images', img)).convert()

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.y = yloc

        self.rect.x = xloc

class Player(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self):

        pygame.sprite.Sprite.__init__(self)

        self.movex = 0

        self.movey = 0

        self.frame = 0

        self.health = 10

        self.damage = 0

        self.score = 0

        self.facing_right = True

        self.is_jumping = True

        self.is_falling = True

        self.images = []

        for i in range(1, 5):

            img =  pygame.image.load(os.path.join('images', 

'walk' + str(i) + '.png')).convert()

            img.convert_alpha()

            img.set_colorkey(ALPHA)

            self.images.append(img)

            self.image = self.images[0]

            self.rect = self.image.get_rect()

import sys

import os

'''

Variables

'''

worldx = 960

worldy = 720

fps = 40  

ani = 4  

world = pygame.display.set_mode([worldx, worldy])

forwardx  = 600

backwardx = 120

BLUE = (80, 80, 155)

BLACK = (23, 23, 23)

WHITE = (254, 254, 254)

ALPHA = (0, 255, 0)

tx = 64

ty = 64

f ont_path = os.path.join(os.path.dirname(os.path.realpath 

(__file__)),"fonts","amazdoom.ttf")

font_size = tx

pygame.freetype.init()

myfont = pygame.freetype.Font(font_path, font_size)

'''

Objects

'''

def stats(score,health):

    myfont.render_to( world, (4, 4), "Score:"+str(score), BLUE, 

None, size=64)

    myfont.render_to( world, (4, 72), "Health:"+str(health), 

BLUE, None, size=64)

class Throwable(pygame.sprite.Sprite):

    """

    Spawn a player

    """

    def __init__(self, x, y, img, throw):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.firing = throw

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 69

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD THROWING MECHANICS TO YOUR PYTHON GAME

    def gravity(self):

        if self.is_jumping:

            self.movey += 3.2

    def control(self, x, y):

        """

        control player movement

        """

        self.movex += x

    def jump(self):

        if self.is_jumping is False:

            self.is_falling = False

            self.is_jumping = True

    def update(self):

        """

        Update sprite position

        """

        # moving left

        if self.movex < 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image =  pygame.transform.flip(self.images[self.

frame // ani], True, False)

        # moving right

        if self.movex > 0:

            self.is_jumping = True

            self.frame += 1

            if self.frame > 3 * ani:

                self.frame = 0

            self.image = self.images[self.frame // ani]

        # collisions

        enemy_hit_list =  pygame.sprite.spritecollide(self, 

enemy_list, False)

        if self.damage == 0:

            for enemy in enemy_hit_list:

                if not self.rect.contains(enemy):

                    self.damage = self.rect.colliderect(enemy)

        if self.damage == 1:

            idx = self.rect.collidelist(enemy_hit_list)

            if idx == -1:

                self.damage = 0   # set damage back to 0

                self.health -= 1  # subtract 1 hp

        ground_hit_list =  pygame.sprite.spritecollide(self, 

ground_list, False)

        for g in ground_hit_list:

            self.movey = 0

            self.rect.bottom = g.rect.top

            self.is_jumping = False  # stop jumping

        # fall off the world

        if self.rect.y > worldy:

            self.health -=1

            print(self.health)

            self.rect.x = tx

            self.rect.y = ty

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        for p in plat_hit_list:

            self.is_jumping = False  # stop jumping

            self.movey = 0

            if self.rect.bottom <= p.rect.bottom:

               self.rect.bottom = p.rect.top

            else:

               self.movey += 3.2

        if self.is_jumping and self.is_falling is False:

            self.is_falling = True

            self.movey -= 33  # how high to jump

        loot_hit_list =  pygame.sprite.spritecollide(self, loot_

list, False)

        for loot in loot_hit_list:

                loot_list.remove(loot)

                self.score += 1

                print(self.score)

 

        plat_hit_list =  pygame.sprite.spritecollide(self,  

plat_list, False)

        self.rect.x += self.movex

        self.rect.y += self.movey

class Enemy(pygame.sprite.Sprite):

    """

    Spawn an enemy

    """

    def __init__(self, x, y, img):

        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.image.load(os.path.join('images',img))

        self.image.convert_alpha()

        self.image.set_colorkey(ALPHA)

        self.rect = self.image.get_rect()

        self.rect.x = x

        self.rect.y = y

        self.counter = 0

    def move(self):

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


70 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD THROWING MECHANICS TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

        plat_list = pygame.sprite.Group()

        ploc = []

        i=0

        if lvl == 1:

            ploc.append((200, worldy - ty - 128, 3))

            ploc.append((300, worldy - ty - 256, 3))

            ploc.append((500, worldy - ty - 128 , 4))

            while i < len(ploc):

                j=0

                while j <= ploc[i][2]:

                     plat =  Platform((ploc[i][0] + (j*tx)), 

ploc[i][1], tx, ty, 'tile.png')

                    plat_list.add(plat)

                    j = j + 1

                print('run' + str(i) + str(ploc[i]))

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl))

        return plat_list

    def loot(lvl):

        if lvl == 1:

            loot_list = pygame.sprite.Group()

            loot = Platform(tx*5, ty*5, tx, ty, 'loot_1.png')

            loot_list.add(loot)

        if lvl == 2:

            print(lvl)

        return loot_list

'''

Setup

'''

backdrop = pygame.image.load(os.path.join('images', 'stage.png'))

clock = pygame.time.Clock()

pygame.init()

backdropbox = world.get_rect()

main = True

player = Player()  # spawn player

player.rect.x = 0  # go to x

player.rect.y = 30  # go to y

player_list = pygame.sprite.Group()

player_list.add(player)

steps = 10

fire = Throwable(player.rect.x, player.rect.y, 'fire.png', 0)

firepower = pygame.sprite.Group()

eloc = []

        '''

        enemy movement

        '''

        distance = 80

        speed = 8

        if self.counter >= 0 and self.counter <= distance:

            self.rect.x += speed

        elif  self.counter >= distance and self.counter  

<= distance*2:

            self.rect.x -= speed

        else:

            self.counter = 0

        self.counter += 1

    def update(self, firepower, enemy_list):

        """

        detect firepower collision

        """

        fire_hit_list =  pygame.sprite.spritecollide(self, 

firepower, False)

        for fire in fire_hit_list:

            enemy_list.remove(self)

class Level:

    def ground(lvl, gloc, tx, ty):

        ground_list = pygame.sprite.Group()

        i = 0

        if lvl == 1:

            while i < len(gloc):

                ground =  Platform(gloc[i], worldy - ty, tx, ty, 

'tile-ground.png')

                ground_list.add(ground)

                i = i + 1

        if lvl == 2:

            print("Level " + str(lvl) )

        return ground_list

    def bad(lvl, eloc):

        if lvl == 1:

            enemy = Enemy(eloc[0],eloc[1],'enemy.png')

            enemy_list = pygame.sprite.Group()

            enemy_list.add(enemy)

        if lvl == 2:

            print("Level " + str(lvl) )

        return enemy_list

    # x location, y location, img width, img height, img file

    def platform(lvl,tx,ty):

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 71

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ADD THROWING MECHANICS TO YOUR PYTHON GAME

eloc = [300, worldy-ty-80]

enemy_list = Level.bad(1, eloc )

gloc = []

i = 0

while i <= (worldx / tx) + tx:

    gloc.append(i * tx)

    i = i + 1

ground_list = Level.ground(1, gloc, tx, ty)

plat_list = Level.platform(1, tx, ty)

enemy_list = Level.bad( 1, eloc )

loot_list = Level.loot(1)

'''

Main Loop

'''

while main:

    for event in pygame.event.get():

        if event.type == pygame.QUIT:

            pygame.quit()

            try:

                sys.exit()

            finally:

                main = False

        if event.type == pygame.KEYDOWN:

            if event.key == ord('q'):

                pygame.quit()

                try:

                    sys.exit()

                finally:

                    main = False

            if event.key == pygame.K_LEFT or event.key == ord('a'):

                player.control(-steps, 0)

            if event.key == pygame.K_RIGHT or event.key == ord('d'):

                player.control(steps, 0)

            if event.key == pygame.K_UP or event.key == ord('w'):

                print('jump')

        if event.type == pygame.KEYUP:

            if event.key ==  pygame.K_LEFT or event.key == ord('a'):

                player.control(steps, 0)

                player.facing_right = False

            if event.key ==  pygame.K_RIGHT or event.key == ord('d'):

                player.control(-steps, 0)

                player.facing_right = True

            if event.key == pygame.K_SPACE:

                if not fire.firing:

                    fire =  Throwable(player.rect.x, player.rect.y, 

'fire.png', 1)

                    firepower.add(fire)

    # scroll the world forward

    if player.rect.x >= forwardx:

            scroll = player.rect.x - forwardx

            player.rect.x = forwardx

            for p in plat_list:

                p.rect.x -= scroll

        for e in enemy_list:

            e.rect.x -= scroll

        for l in loot_list:

            l.rect.x -= scroll

    # scroll the world backward

    if player.rect.x <= backwardx:

            scroll = backwardx - player.rect.x

            player.rect.x = backwardx

            for p in plat_list:

                   p.rect.x += scroll

        for e in enemy_list:

            e.rect.x += scroll

        for l in loot_list:

            l.rect.x += scroll

    world.blit(backdrop, backdropbox)

    player.update()

    player.gravity()

    player_list.draw(world)

    if fire.firing:

        fire.update(worldy)

        firepower.draw(world)

    enemy_list.draw(world)

        enemy_list.update(firepower,enemy_list)

    loot_list.draw(world)

    ground_list.draw(world)

    plat_list.draw(world)

    for e in enemy_list:

        e.move()

    stats(player.score, player.health)

    pygame.display.flip()

    clock.tick(fps)

Links
[1]  https://opensource.com/article/17/12/game-python-add-a-

player
[2]  https://opensource.com/article/18/5/pygame-enemy

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/17/12/game-python-add-a-player
https://opensource.com/article/18/5/pygame-enemy


72 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

ADD SOUND TO YOUR PYTHON GAME  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PYGAME PROVIDES an easy way to integrate 
sounds into your Python video game. 

Pygame’s mixer module [1] can play one or more sounds 
on command, and by mixing those sounds together, you 
can have, for instance, background music playing at the 
same time you hear the sounds of your hero collecting loot 
or jumping over enemies.

It is easy to integrate the mixer module into an existing 
game, so—rather than giving you code samples showing 
you exactly where to put them—this article explains the four 
steps required to get sound in your application.

Start the mixer
First, in your code’s setup section, start the mixer process. 
Your code already starts Pygame and Pygame fonts, so 
grouping it together with these is a good idea:

pygame.init()

pygame.font.init()

pygame.mixer.init() # add this line

Define the sounds
Next, you must define the sounds you want to use. This re-
quires that you have the sounds on your computer, just as 
using fonts requires you to have fonts, and using graphics 
requires you to have graphics.

You also must bundle those sounds with your game so 
that anyone playing your game has the sound files.

To bundle a sound with your game, first create a new 
directory in your game folder, right along with the directory 
you created for your images and fonts. Call it sound:

s = 'sound'

Even though there are plenty of sounds on the internet, 
it’s not necessarily legal to download them and give them 
away with your game. It seems strange because so many 

sounds from famous video games are such a part of popu-
lar culture, but that’s how the law works. If you want to ship 
a sound with your game, you must find an open source or 
Creative Commons [2] sound that gives you permission to 
give the sound away with your game.

There are several sites that specialize in free and legal 
sounds, including:

•  Freesound [3] hosts sound effects of all sorts.
•  Incompetech [4] hosts background music.
•  Open Game Art [5] hosts some sound effects and music.

Some sound files are free to use only if you give the com-
poser or sound designer credit. Read the conditions of use 
carefully before bundling any with your game! Musicians and 
sound designers work just as hard on their sounds as you 
work on your code, so it’s nice to give them credit even when 
they don’t require it.

To give your sound sources credit, list the sounds that you 
use in a text file called CREDIT, and place the text file in your 
game folder.

You might also try making your own music. The excellent 
LMMS [6] audio workstation is easy to use and ships with 
lots of interesting sounds. It’s available on all major platforms 
and exports to Ogg Vorbis [7] (OGG) audio format.

Add sound to Pygame
When you find a sound that you like, download it. If it comes 
in a ZIP or TAR file, extract it and move the sounds into the 
sound folder in your game directory.

If the sound file has a complicated name with spaces or 
special characters, rename it. The filename is completely 
arbitrary, and the simpler it is, the easier it is for you to type 
into your code.

Most video games use OGG sound files because the 
format provides high quality in small file sizes. When you 
download a sound file, it might be an MP3, WAVE, FLAC, 

Add sound to your Python game
Hear what happens when your hero fights, jumps, collects loot, and more by adding sounds to your 
game. Learn how in the 13th article in this series on creating a platformer in Pygame.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/docs/ref/mixer.html
https://opensource.com/article/20/1/what-creative-commons
https://freesound.org/
https://incompetech.filmmusic.io/
https://opengameart.org/
https://opensource.com/life/16/2/linux-multimedia-studio
https://en.wikipedia.org/wiki/Vorbis


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 73

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADD SOUND TO YOUR PYTHON GAME

music = pygame.mixer.music.load(os.path.join(s, 'music.ogg'))

And start the music:

pygame.mixer.music.play(-1)

The -1 value tells Pygame to loop the music file infinitely. 
You can set it to anything from 0 and beyond to define how 
many times the music should loop before stopping.

Enjoy the soundscapes
Music and sound can add a lot of flavor to your game. Try 
adding some to your Pygame project!

Links
[1]  https://www.pygame.org/docs/ref/mixer.html
[2]  https://opensource.com/article/20/1/what-creative-

commons
[3]  https://freesound.org/
[4]  https://incompetech.filmmusic.io/
[5]  https://opengameart.org/
[6]  https://opensource.com/life/16/2/linux-multimedia-studio
[7]  https://en.wikipedia.org/wiki/Vorbis
[8]  https://www.freac.org/index.php/en/downloads-

mainmenu-330
[9]  http://getmiro.com/

or another audio format. To keep your compatibility high and 
your download size low, convert these to Ogg Vorbis with a 
tool like fre:ac [8] or Miro [9].

For example, assume you have downloaded a sound file 
called ouch.ogg.

In your code’s setup section, create a variable represent-
ing the sound file you want to use:

ouch = pygame.mixer.Sound(os.path.join(s, 'ouch.ogg'))

Trigger a sound
To use a sound, all you have to do is call the variable when 
you want to trigger it. For instance, to trigger the OUCH 
sound effect when your player hits an enemy:

for enemy in enemy_hit_list:

    pygame.mixer.Sound.play(ouch)

    score -= 1

You can create sounds for all kinds of actions, such as jump-
ing, collecting loot, throwing, colliding, and whatever else 
you can imagine.

Add background music
If you have music or atmospheric sound effects you want 
to play in your game’s background, you can use the music 
function of Pygame’s mixer module. In your setup section, 
load the music file:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.pygame.org/docs/ref/mixer.html
https://opensource.com/article/20/1/what-creative-commons
https://opensource.com/article/20/1/what-creative-commons
https://freesound.org/
https://incompetech.filmmusic.io/
https://opengameart.org/
https://opensource.com/life/16/2/linux-multimedia-studio
https://en.wikipedia.org/wiki/Vorbis
https://www.freac.org/index.php/en/downloads-mainmenu-330
https://www.freac.org/index.php/en/downloads-mainmenu-330
http://getmiro.com/
https://www.freac.org/index.php/en/downloads-mainmenu-330
http://getmiro.com/


74 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

HOW TO INSTALL PYTHON ON WINDOWS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SO YOU WANT TO LEARN to program? One of 
the most common languages 

to start with is Python [1], popular for its unique blend of ob-
ject-oriented [2] structure and simple syntax. Python is also 
an interpreted language, meaning you don't need to learn 
how to compile code into machine language: Python does 
that for you, allowing you to test your programs sometimes 
instantly and, in a way, while you write your code.

Just because Python is easy to learn doesn’t mean you 
should underestimate its potential power. Python is used 
by movie studios [3], financial institutions, IT houses, video 
game studios, makers, hobbyists, artists [4], teachers, and 
many others.

On the other hand, Python is also a serious programming 
language, and learning it takes dedication and practice. Then 
again, you don’t have to commit to anything just yet. You can 
install and try Python on nearly any computing platform, so if 
you’re on Windows, this article is for you.

If you want to try Python on a completely open source oper-
ating system, you can install Linux [5] and then try Python [6].

Get Python
Python is available from its website, Python.org [7]. Once 
there, hover your mouse over the Downloads menu, then 
over the Windows option, and then click the button to down-
load the latest release.

Alternatively, you can click the Downloads menu button and 
select a specific version from the downloads page.

Install Python
Once the package is downloaded, open it to start the 
installer.

It is safe to accept the default install location, and it’s 
vital to add Python to PATH. If you don’t add Python to your 
PATH, then Python applications won’t know where to find 
Python (which they require in order to run). This is not se-
lected by default, so activate it at the bottom of the install 
window before continuing!

Before Windows allows you to install an application from a 
publisher other than Microsoft, you must give your approval. 
Click the Yes button when prompted by the User Account 
Control system.

How to install Python on Windows
Install Python, run an IDE, and start coding right from your Microsoft Windows desktop.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.python.org/
https://opensource.com/article/19/7/get-modular-python-classes
https://github.com/edniemeyer/weta_python_db
https://opensource.com/article/19/7/rgb-cube-python-scribus
https://opensource.com/article/19/7/ways-get-started-linux
https://opensource.com/article/17/10/python-101
https://www.python.org/downloads/


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 75

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HOW TO INSTALL PYTHON ON WINDOWS

To install it, visit the PyCharm IDE website, download the 
installer, and run it. The process is the same as with Python: 
start the installer, allow Windows to install a non-Microsoft 
application, and wait for the installer to finish.

Once PyCharm is installed, double-click the PyCharm icon 
on your desktop or select it from the Start menu.

Tell Python what to do
Keywords tell Python what you want it to do. In IDLE, go to 
the File menu and create a new file. In PyCharm, click the 
New Project button.

In your new, empty file, type this into IDLE or PyCharm:

print("Hello world.")

•   If you are using IDLE, go to the Run menu and select the 
Run Module option.

•   If you are using PyCharm, click the Run button in the top 
right corner of the window.

Any time you run code, your IDE prompts you to save the file 
you’re working on. Do that before continuing.

The keyword print tells Python to print out whatever text 
you give it in parentheses and quotes.

That’s not very exciting, though. At its core, Python has ac-
cess to only basic keywords like print and help, basic math 
functions, and so on.

Use the import keyword to load more keywords. Start a 
new file and name it pen.py.

Warning: Do not call your file turtle.py, because turtle.
py is the name of the file that contains the turtle program you 
are controlling. Naming your file turtle.py confuses Python 
because it thinks you want to import your own file.

Turtle [11] is a fun module to use. Add this code to your file:

import turtle

turtle.begin_fill()

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

Wait patiently for Windows to distribute the files from the Py-
thon package into the appropriate locations, and when it’s 
finished, you’re done installing Python.

Time to play.

Install an IDE
To write programs in Python, all you really need is a text editor, 
but it’s convenient to have an integrated development environ-
ment (IDE). An IDE integrates a text editor with some friendly 
and helpful Python features. IDLE 3 and Pycharm (Commu-
nity Edition) are two great open source options to consider.

IDLE 3
Python comes with an IDE called IDLE. You can write code 
in any text editor, but using an IDE provides you with key-
word highlighting to help detect typos, a Run button to test 
code quickly and easily, and other code-specific features that 
a plain text editor like Notepad++ [8] normally doesn’t have.

To start IDLE, click the Start (or Window) menu and type 
python for matches. You may find a few matches, since Py-
thon provides more than one interface, so make sure you 
launch IDLE.

If you don’t see Python in the Start menu, reinstall Python. 
Be sure to select Add Python to PATH in the install wizard. 
Refer to the Python docs [9] for detailed instructions.

PyCharm IDE
If you already have some coding experience and IDLE seems 
too simple for you, try PyCharm (Community Edition) [10], an 
open source IDE for Python. It has keyword highlighting to 
help detect typos, quotation and parenthesis completion to 
avoid syntax errors, line numbers (helpful when debugging), 
indentation markers, and a Run button to test code quickly 
and easily.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/life/15/8/python-turtle-graphics
https://notepad-plus-plus.org/
http://docs.python.org/3/using/windows.html
https://www.jetbrains.com/pycharm/download/#section=windows


76 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

Once you complete that script, you’re ready to move on to 
more exciting modules. A good place to start is this introduc-
tory dice game [12].

Stay Pythonic
Python is a fun language with modules for practically any-
thing you can think to do with it. As you can see, it’s easy to 
get started with Python, and as long as you’re patient with 
yourself, you may find yourself understanding and writing 
Python code with the same fluidity as you write your native 
language. Work through some Python articles [13] here on 
Opensource.com, try scripting some small tasks for yourself, 
and see where Python takes you. To really integrate Python 
with your daily workflow, you might even try Linux, which is 
natively scriptable in ways no other operating system is. You 
might find yourself, given enough time, using the applica-
tions you create!

Good luck, and stay Pythonic.

Links
[1]  https://www.python.org/
[2]  https://opensource.com/article/19/7/get-modular-python-

classes
[3]  https://github.com/edniemeyer/weta_python_db
[4]  https://opensource.com/article/19/7/rgb-cube-python-

scribus
[5]  https://opensource.com/article/19/7/ways-get-started-linux
[6]  https://opensource.com/article/17/10/python-101
[7]  https://www.python.org/downloads/
[8] https://notepad-plus-plus.org/
[9]  http://docs.python.org/3/using/windows.html
[10]  https://www.jetbrains.com/pycharm/

download/#section=windows
[11]  https://opensource.com/life/15/8/python-turtle-graphics
[12]  https://opensource.com/article/17/10/python-101#python-

101-dice-game
[13]  https://opensource.com/sitewide-search?search_api_

views_fulltext=Python

turtle.left(90)

turtle.forward(100)

turtle.end_fill()

See what shapes you can draw with the turtle module.
To clear your turtle drawing area, use the turtle.clear() 

keyword. What do you think the keyword turtle.color("blue") 
does?

Try more complex code:

import turtle as t

import time

t.color("blue")

t.begin_fill()

counter = 0

while counter < 4:

    t.forward(100)

    t.left(90)

    counter = counter+1

t.end_fill()

time.sleep(2)

Notice that turtle, in this example code, has not only been 
imported, but it’s also been given the shorter nickname t, 
which is quicker and easier to type. This is a convenience 
function in Python.

Challenge
As a challenge, try changing your script to get this result:

HOW TO INSTALL PYTHON ON WINDOWS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/10/python-101#python-101-dice-game
https://opensource.com/sitewide-search?search_api_views_fulltext=Python
https://opensource.com/
https://www.python.org/
https://opensource.com/article/19/7/get-modular-python-classes
https://opensource.com/article/19/7/get-modular-python-classes
https://github.com/edniemeyer/weta_python_db
https://opensource.com/article/19/7/rgb-cube-python-scribus
https://opensource.com/article/19/7/rgb-cube-python-scribus
https://opensource.com/article/19/7/ways-get-started-linux
https://opensource.com/article/17/10/python-101
https://www.python.org/downloads/
https://notepad-plus-plus.org/
http://docs.python.org/3/using/windows.html
https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows
https://opensource.com/life/15/8/python-turtle-graphics
https://opensource.com/article/17/10/python-101#python-101-dice-game
https://opensource.com/article/17/10/python-101#python-101-dice-game
https://opensource.com/sitewide-search?search_api_views_fulltext=Python
https://opensource.com/sitewide-search?search_api_views_fulltext=Python


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 77

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MANAGING PYTHON PACKAGES THE RIGHT WAY

THE PYTHON PACKAGE INDEX (PYPI) indexes an 
amazing array of libraries and 

applications covering every use case imaginable. Howev-
er, when it comes to installing and using these packages, 
newcomers often find themselves running into issues with 
missing permissions, incompatible library dependencies, 
and installations that break in surprising ways.

The Zen of Python states: “There should be one—and 
preferably only one—obvious way to do it.” This is certainly 
not always the case when it comes to installing Python pack-
ages. However, there are some tools and methods that can 
be considered best practices. Knowing these can help you 
pick the right tool for the right situation.

Installing applications system-wide
pip is the de facto package manager in the Python world. 
It can install packages from many sources, but PyPI [1] is 
the primary package source where it’s used. When installing 
packages, pip will first resolve the dependencies, check if 
they are already installed on the system, and, if not, install 
them. Once all dependencies have been satisfied, it pro-
ceeds to install the requested package(s). This all happens 
globally, by default, installing everything onto the machine in 
a single, operating system-dependent location.

Python 3.7 looks for packages on an Arch Linux system in 
the following locations:

$ python3.7 -c "import sys; print('\n'.join(sys.path))"

/usr/lib/python37.zip

/usr/lib/python3.7

/usr/lib/python3.7/lib-dynload

/usr/lib/python3.7/site-packages

One problem with global installations is that only a single 
version of a package can be installed at one time for a given 
Python interpreter. This can cause issues when a package 
is a dependency of multiple libraries or applications, but they 
require different versions of this dependency. Even if things 
seem to be working fine, it is possible that upgrading the de-
pendency (even accidentally while installing another pack-
age) will break these applications or libraries in the future.

Another potential issue is that most Unix-like distributions 
manage Python packages with the built-in package manager 
(dnf, apt, pacman, brew, and so on), and some of these 
tools install into a non-user-writeable location.

$ python3.7 -m pip install pytest

Collecting pytest

Downloading...

[...]

In stalling collected packages: atomicwrites, pluggy, py,  

more-itertools, pytest

Co uld not install packages due to an EnvironmentError: [Error 13] 

Permission denied:

' /usr/lib/python3.7/site-packages/site-packages/atomicwrites-

x.y.z.dist-info'

Consider using '--user' option or check the permissions.

$

This fails because we are running pip install as a non-root 
user and we don’t have write permission to the site-packages 
directory.

You can technically get around this by running pip as a 
root (using the sudo command) or administrative user. How-
ever, one problem is that we just installed a bunch of Python 
packages into a location the Linux distribution’s package 
manager owns, making its internal database and the instal-
lation inconsistent. This will likely cause issues anytime we 
try to install, upgrade, or remove any of these dependencies 
using the package manager.

As an example, let’s try to install pytest again, but now 
using my system’s package manager, pacman:

$ sudo pacman -S community/python-pytest

resolving dependencies...

looking for conflicting packages...

[...]

py thon-py: /usr/lib/site-packages/py/_pycache_/ 

_metainfo.cpython-37.pyc exists in filesystem

py thon-py: /usr/lib/site-packages/py/_pycache_/ 

_builtin.cpython-37.pyc exists in filesystem

py thon-py: /usr/lib/site-packages/py/_pycache_/ 

_error.cpython-37.pyc exists in filesystem

Another potential issue is that an operating system can use Py-
thon for system tools, and we can easily break these by modi-
fying Python packages outside the system package manager. 
This can result in an inoperable system, where restoring from 
a backup or a complete reinstallation is the only way to fix it.

sudo pip install: A bad idea
There is another reason why running pip install as root is a 

Managing Python packages 
the right way  By László Kiss Kollár

Don’t fall victim to the perils of Python package management.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/


78 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

If the package we want to use is available and we don’t 
mind slightly older versions, the package manager offers a 
convenient and safe way to install Python packages. And, 
since these packages install system-wide, they are avail-
able to all users on the system. This also means that we 
can use them only if we have the required permissions to 
install packages on the system.

If we want to use something that is not available in the 
package manager’s selection or is too old, or we simply don’t 
have the necessary permissions to install packages, we can 
use pip instead.

User scheme installations
pip supports the “user scheme” mode introduced in Py-
thon 2.6. This allows for packages to be installed into a us-
er-owned location. On Linux, this is typically ~/.local. Putting 
~/.local/bin/ on our PATH will make it possible to have Py-
thon tools and scripts available at our fingertips and manage 
them without root privileges.

$ python3.7 -m pip install --user black

Collecting black

 Using cached

[...]

Installing collected packages: click, toml, black

 Th e scripts black and blackd are installed in  

'/home/tux/.local/bin' which is not on PATH.

 Co nsider adding this directory to PATH or, if you prefer to  

suppress this warning, use --no-warn-script-location.

Successfully installed black-x.y click-x.y toml-x.y.z

$

However, this solution does not solve the issue if and when 
we need different versions of the same package.

Enter virtual environments
Virtual environments offer isolated Python package installa-
tions that can coexist independently on the same system. 
This offers the same benefits as user scheme installations, 
but it also allows the creation of self-contained Python instal-
lations where an application does not share dependencies 
with any other application. Virtualenv creates a directory 
that holds a self-contained Python installation, including the 
Python binary and essential tools for package management: 
setuptools, pip, and wheel.

Creating virtual environments
virtualenv is a third-party package, but Python 3.3 added 
the venv package to the standard library. As a result, we 
don’t have to install anything to use virtual environments in 
modern versions of Python. We can simply use python3.7 
-m venv <env_name> to create a new virtual environment.

After creating a new virtual environment, we must activate 
it by sourcing the activate script in the bin directory of the 

bad idea. To explain this, we first have to look at how Python 
libraries and applications are packaged.

Most Python libraries and applications today use setuptools 
as their build system. setuptools requires a setup.py file in the 
root of the project, which describes package metadata and can 
contain arbitrary Python code to customize the build process. 
When a package is installed from the source distribution, this 
file is executed to perform the installation and execute tasks like 
inspecting the system, building the package, etc.

Executing setup.py with root permissions means we can 
effectively open up the system to malicious code or bugs. 
This is a lot more likely than you might think. For example, 
in 2017, several packages were uploaded to PyPI [2] with 
names resembling popular Python libraries. The uploaded 
code collected system and user information and uploaded 
it to a remote server. These packages were pulled shortly 
thereafter. However, these kinds of “typo-squatting” incidents 
can happen anytime since anyone can upload packages to 
PyPI and there is no review process to make sure the code 
doesn’t do any harm.

The Python Software Foundation (PSF) recently an-
nounced that it will sponsor work to improve the security 
of PyPI [3]. This should make it more difficult to carry out 
attacks such as “pytosquatting” [4] and hopefully make this 
less of an issue in the future.

Security issues aside, sudo pip install won’t solve all the 
dependency problems: you can still install only a single ver-
sion of any given library, which means it’s still easy to break 
applications this way.

Let’s look at some better alternatives.

OS package managers
It is very likely that the “native” package manager we use on 
our OS of choice can also install Python packages. The ques-
tion is: should we use pip, or apt, dnf, pacman, and so on?

The answer is: it depends.
pip is generally used to install packages directly from PyPI, 

and Python package authors usually upload their packages 
there. However, most package maintainers will not use PyPI, 
but instead take the source code from the source distribu-
tion (sdist) created by the author or a version control system 
(e.g., GitHub), apply patches if needed, and test and release 
the package for their respective platforms. Compared to the 
PyPI distribution model, this has pros and cons:

•   Software maintained by native package managers is gen-
erally more stable and usually works better on the given 
platform (although this might not always be the case).

•   This also means it takes extra work to package and test 
upstream Python code:

   1.   The package selection is usually much smaller than 
what PyPI offers.

   2.   Updates are slower and package managers will often 
ship much older versions.

MANAGING PYTHON PACKAGES THE RIGHT WAY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/pypa/warehouse/issues/3948
http://pyfound.blogspot.com/2018/12/upcoming-pypi-improvements-for-2019.html
https://pytosquatting.overtag.dk/


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 79

    sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])

(test-env) $

We can simply run ~/test-env/bin/black from anywhere on 
the system and it will work just fine.

It can be useful to add certain commonly used virtual environ-
ments to the PATH environment variable so we can quickly and 
easily use the scripts in them without typing out the full path:

export PATH=$PATH:~/test-env/bin

Now when we execute black, it will be picked up from the 
virtual environment (unless it appears somewhere else earli-
er on the PATH). Add this line to your shell’s initialization file 
(e.g., ~/.bashrc) to have it automatically set in all new shells.

Virtual environments are very commonly used for Python 
development because each project gets its own environment 
where all library dependencies can be installed without inter-
fering with the system installation.

I recommend checking out the virtualenvwrapper [5] 
project, which can help simplify common virtualenv-based 
workflows.

What about Conda?
Conda [6] is a package management tool that can install pack-
ages provided by Anaconda on the repo.continuum.io [7] 
repository. It has become very popular, especially for data sci-
ence. It offers an easy way to create and manage environments 
and install packages in them. One drawback compared to pip 
is that the package selection is much smaller.

A recipe for successful package management
•   Never run sudo pip install.
•   If you want to make a package available to all users of the 

machine, you have the right permissions, and the package 
is available, then use your distribution’s package manager 
(apt, yum, pacman, brew, etc.).

•   If you don’t have root permissions or the OS package man-
ager doesn’t have the package you need, use pip install 
--user and add the user installation directory to the PATH 
environment variable.

•   If you want multiple versions of the same library to coexist, 
to do Python development, or just to isolate dependencies 
for any other reason, use virtual environments.

Links
[1]  https://pypi.org/
[2]  https://github.com/pypa/warehouse/issues/3948
[3]  http://pyfound.blogspot.com/2018/12/upcoming-pypi-

improvements-for-2019.html
[4]  https://pytosquatting.overtag.dk/
[5]  https://virtualenvwrapper.readthedocs.io/
[6]  https://conda.io/
[7]  https://repo.continuum.io/

newly created environment. The activation script creates 
a new subshell and adds the bin directory to the PATH en-
vironment variable, enabling us to run binaries and scripts 
from this location. This means that this subshell will use 
python, pip, or any other tool installed in this location in-
stead of the ones installed globally on the system.

$ python3.7 -m venv test-env

$ . ./test-env/bin/activate

(test-env) $

After this, any command we execute will use the Python installa-
tion inside the virtual environment. Let’s install some packages.

(test-env)$ python3.7 -m pip install --user black

Collecting black

 Using cached

[...]

Installing collected packages: click, toml, black

Successfully installed black-x.y click-x.y toml-x.y.z

(test-env) $

We can use black inside the virtual environment without any 
manual changes to the environment variables like PATH or 
PYTHONPATH.

(test-env) $ black --version

black, version x.y

(test-env) $ which black

/home/tux/test-env/bin/black

(test-env) $

When we are done with the virtual environment, we can sim-
ply deactivate it with the deactivate function.

(test-env) $ deactivate

$

Virtual environments can also be used without the activation 
script. Scripts installed in a venv will have their shebang line 
rewritten to use the Python interpreter inside the virtual envi-
ronment. This way, we can execute the script from anywhere 
on the system using the full path to the script.

(test-env) $ head /home/tux/test-env/bin/black

#!/home/tux/test-env/bin/python3.7

# -*- coding: utf-8 -*-

import re

import sys

from black import main

if __name__ == '__main__':

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MANAGING PYTHON PACKAGES THE RIGHT WAY

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://virtualenvwrapper.readthedocs.io/
https://conda.io/
https://repo.continuum.io/
https://pypi.org/
https://github.com/pypa/warehouse/issues/3948
http://pyfound.blogspot.com/2018/12/upcoming-pypi-improvements-for-2019.html
http://pyfound.blogspot.com/2018/12/upcoming-pypi-improvements-for-2019.html
https://pytosquatting.overtag.dk/
https://virtualenvwrapper.readthedocs.io/
https://conda.io/
https://repo.continuum.io/


80 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

EASILY SET IMAGE TRANSPARENCY USING GIMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WHETHER YOU’RE programming a game or an app 
with Python [1] or Lua [2], you’re prob-

ably using PNG graphics for your game assets. An advan-
tage of the PNG format, which is not available in a JPEG, 
is the ability to store an alpha channel. Alpha is, essentially, 
the “color” of invisibility or transparency. Alpha is the part of 
an image you don’t see. For example, if you were to draw a 
doughnut, the doughnut hole would be filled with alpha, and 
you could see whatever was behind it.

A common problem is how to find the alpha part of an 
image. Sometimes, your programming framework, whether 
it’s Python Arcade [3], Pygame [4], LÖVE, or anything else, 
detects the alpha channel and treats it (after the appropri-
ate function calls) as transparency. That means it renders no 
new pixels where there’s alpha, leaving that doughnut hole 
empty. It’s 100% transparent or 0% opaque and functionally 
“invisible.”

Other times, your framework and your graphic asset don’t 
agree on where the alpha channel is located (or that an 
alpha channel exists at all), and you get pixels where you 
wanted transparency.

This article describes the most sure-fire way I know to 
work around that.

Chroma key
In computer graphics, there are a few values that contribute 
to how a pixel is rendered. Chrominance, or chroma, de-
scribes the saturation or intensity of a pixel. The chroma key 
technique (also known as green screening) was originally 
developed as a chemical process, in which a specific color 
(blue at first and later green) was deliberately obscured by a 
matte during the copying of a film negative, allowing anoth-
er image to be substituted where there once was a blue or 
green screen. That’s a simplified explanation, but it demon-
strates the origins of what is known as the alpha channel in 
computer graphics.

An alpha channel is information saved in a graphic to iden-
tify pixels that are meant to be transparent. RGB graphics, 
for example, have red, green, and blue channels. RGBA 
graphics contain red, green, blue, and alpha. The value of 
alpha can range from 0 to 1, with decimal points being valid 
entries.

Because an alpha channel can be expressed in several 
different ways, relying on an embedded alpha channel can 

be problematic. Instead, you can pick a color and turn it into 
an alpha value of 0 in your game framework. For that to 
work, you must know the colors in your graphic.

Prepare your graphic
To prepare a graphic with an explicit color reserved exclu-
sively for a chroma key, open the graphic in your favorite 
graphic editor. I recommend GIMP [5] or Glimpse [6], but 
mtPaint [7] or Pinta [8] or even Inkscape [9] can work just 
as well, depending on the nature of your graphics and your 
ability to translate these instructions to a different tool.

Start by opening this graphic of Tux the penguin:

(Seth Kenlon, CC BY-SA 4.0)

Select the graphic
Once the graphic is open, go to the Windows menu and 
select Dockable Dialogs and then Layers. Right-click on 
Tux’s layer in the Layer palette. From the pop-up menu, se-
lect Alpha to Selection. If your image does not have a built-
in alpha channel, then you must create your own selection 
manually.

(Seth Kenlon, CC BY-SA 4.0)

Easily set image transparency 
using GIMP
Use chroma key or “green screen” techniques to set transparencies on your video-game graphics.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/10/python-101
https://opensource.com/article/17/4/how-program-games-raspberry-pi
https://opensource.com/article/18/4/easy-2d-game-creation-python-and-arcade
https://opensource.com/article/17/12/game-framework-python
http://gimp.org/
https://glimpse-editor.github.io/
https://opensource.com/article/17/2/mtpaint-pixel-art-animated-gifs
https://www.pinta-project.com/
http://inkscape.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM 81

(Seth Kenlon, CC BY-SA 4.0)

Now select the Paths panel from the Windows > Dockable 
Dialogs menu. In the Paths panel, click the Path to Selection 
button. Your graphic is now selected.

Grow the selection
If you feel your selection is too tight, you can give yourself 
a little slack by growing the selection. I sometimes do this 
when I want to impose or thicken a border around a graphic.

To grow a selection, click the Select menu and choose 
Grow. Enter a pixel value and click OK.

Invert the selection
You have your graphic selected, but what you actually want 
to select is everything except your graphic. That’s because 
you’re creating an alpha matte to define what in your graphic 
will be replaced by something else. In other words, you need 
to mark the pixels that will be turned invisible.

To invert the selection, click on the Select menu and 
choose Invert. Now everything except your graphic is se-
lected.

Fill with alpha
With everything except your graphic selected, choose the 
color you want to use to designate your alpha matte. The 
most common color is green (as you might guess from the 
term “green screen”). There’s nothing magical about the color 
green or even a particular shade of green. It’s used because 
humans, frequent subjects of graphic manipulation, contain 
no green pigment, so it’s easy to key out green without ac-
cidentally keying out part of the central subject. Of course, if 
your graphic is a green alien or an emerald or something that 
does contain green, you should use a different color. You can 
use any color you want, as long as it’s solid and consistent. 
If you’re doing this to many graphics, your choice should be 
consistent across all graphics.

To create a selection manually, click the Paths tool from the 
toolbox.

(Seth Kenlon, CC BY-SA 4.0)

Using the Paths tool, move your mouse around the graph-
ic, clicking and releasing (do not drag) at each major inter-
section of its outline. Don’t worry about following curves; 
just find the major intersections and corners. This creates 
a node at each point, with a straight line drawn between 
them. You don’t need to close your path, so when you reach 
the final intersection before the one where you started, 
you’re done.

(Seth Kenlon, CC BY-SA 4.0)

Once you’ve created your outline path, go to the Win-
dows menu and select Dockable Dialogs and then Tool 
Options. In the Tool Options panel, select Edit (Ctrl). 
With this activated, you can edit the paths you’ve just 
drawn by clicking the lines or nodes and adjusting them 
to fit your graphic better. You can even give the lines 
curves.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  EASILY SET IMAGE TRANSPARENCY USING GIMP

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


82 A GUIDE TO BUILDING A VIDEO GAME IN PYTHON ...   CC BY-SA 4.0 ...   OPENSOURCE.COM

whether or not you added a border. This process removes 
the alpha channel from your image, filling in any “transpar-
ent” pixels with the background color.

(Seth Kenlon, CC BY-SA 4.0)

You now have an image ready for your game engine. Export 
the image to whatever format your game engine prefers, and 
then import it into your game using whatever function calls 
it requires. In your code, set the alpha value to 00ff00 (or 
whatever color you used), and then use the game engine’s 
graphic transforms to treat that color as an alpha channel.

Other methods
This isn’t the only way to get transparency in your game 
graphics. Check your game engine’s documentation to find 
out how it tries to process alpha channels by default, and 
when you’re not certain, try letting your game engine au-
to-detect transparency in your graphic before you go about 
editing it. Sometimes, your game engine’s expectations and 
your graphic’s preset values happen to match, and you get 
transparency without having to do any extra work.

When that fails, though, try a little chroma key. It’s worked for 
the film industry for nearly 100 years, and it can work for you too.

Links
[1]  https://opensource.com/article/17/10/python-101
[2]  https://opensource.com/article/17/4/how-program-games-

raspberry-pi
[3]  https://opensource.com/article/18/4/easy-2d-game-

creation-python-and-arcade
[4]  https://opensource.com/article/17/12/game-framework-

python
[5]  http://gimp.org/
[6]  https://glimpse-editor.github.io/
[7]  https://opensource.com/article/17/2/mtpaint-pixel-art-

animated-gifs
[8] https://www.pinta-project.com/
[9]  http://inkscape.org/
[10] https://www.w3schools.com/colors/colors_picker.asp
[11]  https://en.wikipedia.org/wiki/HSL_and_HSV

(Seth Kenlon, CC BY-SA 4.0)

Set your foreground color with the color value you’ve cho-
sen. To ensure that your choice is exact, use the HTML [10] 
or HSV [11] representation of the color. For example, if you’re 
using pure green, it can be expressed in GIMP (and most 
open source graphic applications) as 00ff00 (that’s 00 red, 
FF green, and 00 blue, with F being the maximum amount).

(Seth Kenlon, CC BY-SA 4.0)

Whatever color you choose, make sure you take note of the 
HTML or HSV values so you use the exact same color for 
every graphic.

To fill in your alpha matte, click the Edit menu and choose 
Fill with FG Color.

Flatten and export
If you’ve left a border around your graphic, set your back-
ground color to the color you want to use as the border 
stroke. This is usually either black or white, but it can be 
anything that suits your game’s aesthetic.

Once you have set the background color, click on the 
Image menu and select Flatten Image. It’s safe to do this 

EASILY SET IMAGE TRANSPARENCY USING GIMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/17/10/python-101
https://opensource.com/article/17/4/how-program-games-raspberry-pi
https://opensource.com/article/17/4/how-program-games-raspberry-pi
https://opensource.com/article/18/4/easy-2d-game-creation-python-and-arcade
https://opensource.com/article/18/4/easy-2d-game-creation-python-and-arcade
https://opensource.com/article/17/12/game-framework-python
https://opensource.com/article/17/12/game-framework-python
http://gimp.org/
https://glimpse-editor.github.io/
https://opensource.com/article/17/2/mtpaint-pixel-art-animated-gifs
https://opensource.com/article/17/2/mtpaint-pixel-art-animated-gifs
https://www.pinta-project.com/
http://inkscape.org/
https://www.w3schools.com/colors/colors_picker.asp
https://en.wikipedia.org/wiki/HSL_and_HSV
https://creativecommons.org/licenses/by-sa/4.0/
https://www.w3schools.com/colors/colors_picker.asp
https://en.wikipedia.org/wiki/HSL_and_HSV
https://creativecommons.org/licenses/by-sa/4.0/

