
O
P

E
N

 S
O

U
R

C
E

 Y
E

A
R

B
O

O
K

 2
0

18

OPEN SOURCE YEARBOOK
2018

http://opensource.com/yearbook

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 3

Opensource.com publishes stories about creating, adopting, and sharing
open source solutions. Visit Opensource.com to learn more about how the
open source way is improving technologies, education, business, government,
health, law, entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

O p e n s o u r c e . c o m
..........

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal

Blender: Discover the most commonly and frequently used
hotkeys and mouse button presses.

Containers: Learn the lingo and get the basics in this quick and
easy containers primer.

Go: Find out about many uses of the go executable and the most
important packages in the Go standard library.

Inkscape: Inkscape is an incredibly powerful
vector graphics program that you can use to draw
scaleable illustrations or edit vector artwork that
other people have created.

Linux Networking: In this downloadable PDF cheat
sheet, get a list of Linux utilities and commands for
managing servers and networks.

Python 3.7: This cheat sheet rounds up a few
built-in pieces to get new Python programmers
started.

Raspberry Pi: See what you need to
boot your Pi, how to install the operating
system, how to enable SSH and connect
to WiFi, how to install software and update
your system, and links for where to get
further help.

SSH: Most people know SSH as a tool for
remote login, which it is, but it can be used
in many other ways.

Open Source Cheat Sheets
Visit our cheat sheets collection for

free downloads, including:

https://opensource.com/tags/cheat-sheet

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 5

We’re looking for contributors
Here’s how to write for Opensource.com.
Opensource.com publishes stories about creating, adopting, and sharing open source
solutions. In 2018, we published more than 1,000 articles by talented people in tech from
diverse backgrounds and with a variety of skills.
We welcome article proposals and submissions from subject matter users or experts on
a range of topics [1] about open source. To view our editorial calendar and other writer
resources, visit: opensource.com/writers [2]
• �Alternatives: Open source vs. proprietary
• �Automation: Ansible, Bash, Perl, and others
• �Command line: Tools, tutorials, and tips for Linux
• �Data science: Python and more
• �DevOps: Tools and lessons learned
• �Hardware: Tutorials for the Raspberry Pi, Arduino, and more
• �IoT (Internet of Things): Home automation projects and more
• �Java: Tutorials, tips, tools
• �Linux: Getting started with a Linux command or distro
• �Machine learning / AI: How to get started with a tool
• �Multimedia: Music, audio, video, editing, 3D rendering, and more
• �Networking: Tutorials, introductions, and recommendations
• �Personal stories: Open source / Linux experiences, tips, and more
• �Productivity tools: Linux, open source, and more
• �Programming: Go, TensorFlow, Perl, JavaScript, MySQL, Rust, and more
• �Python: Tutorials, tips, tools
• �Systems administration: Sysadmin tools, tips, and more
• �Tools: Tell us what it’s for, how it works, and where to learn more
• �You tell us: What’s important for people in tech to know more about?
To send us your article idea or draft for review, use our webform [3] or email [4].
Before sending in your proposal, review our article submission and style guide [5] for best
practices. If you are writing a technical or how-to article, review our technical style guide [6].
The Opensource.com team provides copy editing and lead images for your article. We also
promote articles on our social media channels. If you haven’t written before, learn more
about how writing can change your career [7] for the better.
Have more questions? Email us at open@opensource.com.

C A L L F O R P A PERS
.

o p e n s o u r c e . c o m
.

Links
[1]	 �https://opensource.com/article/19/1/write-for-us
[2]	 https://opensource.com/writers
[3]	 https://opensource.com/how-submit-article
[4]	E mail: open@opensource.com

[5]	 https://opensource.com/submission-style-guide
[6]	 http://stylepedia.net/
[7]	� https://opensource.com/life/15/7/7-big-reasons-

contribute-opensourcecom

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/1/write-for-us
https://opensource.com/article/19/1/write-for-us
https://opensource.com/writers
https://opensource.com/writers
https://opensource.com/how-submit-article
https://opensource.com/how-submit-article
mailto:open@opensource.com
mailto:open@opensource.com
https://opensource.com/submission-style-guide
https://opensource.com/submission-style-guide
http://stylepedia.net/
http://stylepedia.net/
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom
mailto:open@opensource.com
https://opensource.com/article/19/1/write-for-us
https://opensource.com/writers
https://opensource.com/how-submit-article
mailto:open@opensource.com
https://opensource.com/submission-style-guide
http://stylepedia.net/
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom
https://opensource.com/life/15/7/7-big-reasons-contribute-opensourcecom

6	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

o p e n s o u r c e . c o m
.

W r i t e fo r U s
.

7 big reasons to contribute to Opensource.com:

1 Career benefits: “I probably would not have gotten my most recent job if it had not
been for my articles on Opensource.com.”

2 Raise awareness: “The platform and publicity that is available through Opensource.
com is extremely valuable.”

3 Grow your network: “I met a lot of interesting people after that, boosted my blog stats
immediately, and even got some business offers!”

4 �Contribute back to open source communities: “Writing for Opensource.com has
allowed me to give back to a community of users and developers from whom I have
truly benefited for many years.”

5 Receive free, professional editing services: “The team helps me, through feedback, on
improving my writing skills.”

6 We’re loveable: “I love the Opensource.com team. I have known some of them for
years and they are good people.”

7 Writing for us is easy: “I couldn't have been more pleased with my writing experience.”

Email us to learn more or to share your feedback about writing for us: https://opensource.com/story

Visit our Participate page to more about joining in the Opensource.com community:
https://opensource.com/participate

F ollow U s
.

Stay up on what's going on with Opensource.com by subscribing to our
highlights newsletter: https://opensource.com/email-newsletter

Twitter @opensourceway: https://twitter.com/opensourceway

Facebook: https://www.facebook.com/opensourceway

All lead images by Opensource.com or the author under CC BY-SA 4.0 unless otherwise noted.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
https://opensource.com/story
https://opensource.com/participate
http://www.Opensource.com
https://opensource.com/email-newsletter
https://www.twitter.com/opensourceway
https://www.facebook.com/opensourceway

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 7

Dear Open Source Yearbook reader,

F r o m t h e E d i t o r
.

In 2018 we celebrated 20 years of “open source” and the 20-year anniversary of the Open
Source Initiative (OSI). On Opensource.com, we were excited to join the celebration with
an article by Christine Peterson, who coined the phrase “open source software,” and I
think it’s fitting that we kick off the annual yearbook with this story. Then Opensource.com
managing editor Jen Wike Huger rounds up 30 Linux installation tales in which our readers
and writers tell their tales.

Throughout this issue, you’ll notice that old favorite technologies, including Python,
Bash, Unix, GNOME, and Slackware, are still relevant today, while also leaving room
for newer technologies and trends, including Flutter, Kubernetes, Raspberry Pi, AI, and
serverless computing.

The past year also saw a lot of changes in open source communities. Diversity and
inclusion efforts continued expanding, which is illustrated throughout these pages with
articles on how to welcome newcomers, community metrics, how programmers in
underrepresented countries can get ahead, gracefully receiving and giving code feedback,
and a new film series that highlights women in technology.

We wrap up the 2018 Open Source Yearbook with a look back at pivotal moments in
open source history, the anniversaries of Git and GNOME, an insider’s look at drafting the
GPLv3 license, and 25 years of Slackware, and then we look ahead at 2019 conferences
and resolutions for open source project maintainers.

In 2018, Opensource.com published 1,075 articles and welcomed more than 250 new writers.
The annual Open Source Yearbook offers only a small snapshot of the larger open source
story, and we’re not able to fit all the hundreds of articles and writers into these few pages.

As we begin our ninth year of Opensource.com, our team thanks our writers, readers,
moderators, and community for sharing the stories, tools, and solutions that make up our
wild and wonderful open source world.

Would you like to be part of Opensource.com? We’ll help you get started:
http://opensource.com/story

Best regards,
Rikki Endsley
Opensource.com community manager

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://Opensource.com
http://Opensource.com
http://Opensource.com
http://opensource.com/story
http://www.opensource.com

8	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Co n t e n t s
.

10	� How I coined the term	 Christine Peterson
‘open source’

	 �Christine Peterson finally publishes her account of that
fateful day, 20 years ago.

13	� First time with Linux:	 Jen Wike Huger
30 installation tales

	 The Linux kernel turned another year older on August 25.

18	�15 open source applications for macOS	 Don Watkins
	 �Dedicated open source users won’t find it hard to use their

favorite applications on non-Linux operating systems.

20	�4 ways Flutter makes mobile app	 Emily Fortuna
development delightful

	 �Open source mobile SDK simplifies and speeds iOS and
Android app development.

34	�How to avoid humiliating newcomers:	 A. Jesse
A guide for advanced developers

	� To sustain an open source community’s growth, we need to
welcome new developers. Unfortunately, we are not always a
welcoming bunch.

37	�Community metrics: The challenge 	 Ildiko Vancsa
behind the numbers

	� Although metrics are an important way to understand
community members’ effectiveness, they’re only one piece of
the puzzle.

39	�6 ways programmers from	 Ivange Larry
underrepresented countries can get ahead

	� It’s harder for programmers from less-privileged nations
trying to achieve success alongside people from countries
with many material advantages.

42	�10 principles of resilience or women	 Jennifer Cloer
 in tech

	� We need everyone at the table, in the lab, at the conference
and in the boardroom.

45	�6 tips for receiving feedback on 	 VM (Vicky) Brasseur
your open source contributions

	� Receiving feedback can be hard. These tips will help.

47	�4 best practices for giving 	 VM (Vicky) Brasseur
open source code feedback

	� A few simple guidelines can help you provide better feedback.

24	�Power(Shell) to the people	 Yev Bronshteyn
	� Type less, write cleaner scripts, run consistently across

platforms, and other reasons why Linux and OS X users can
fall in love with PowerShell.

27	�Running a Python application	 Joannah Nanjekye
on Kubernetes

	� This step-by-step tutorial takes you through the process of
deploying a simple Python application on Kubernetes.

30	�Blockchain: Not just for 	 Kate Chapman
cryptocurrency

	 There’s a lot more to blockchain than Bitcoin.

49	�8 unusual FOSS tools	 Marianne Feifer and Jen Krieger
for agile teams

	� In this list, there are no project management apps, no
checklists, and no integrations with GitHub. Just simple
ways to organize your thoughts and promote team
communication.

 51	�Is BDFL a death sentence?	 Jason Baker
	� What happens when a Benevolent Dictator For Life moves on

from an open source project?

W o r k i n g
.

Colla b o r a t i n g
.

Coupled commands with
control operators in Bash

Best Couple

 David Both

32	 	� Add logic to the command line with control
operators in compound commands.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 9

52	� 10 Hello World programs for	 Ben Nuttall
your Raspberry Pi

	� “Hello world” is the beginning of everything when it comes to
computing and programming.

56	�How to get started in AI	 Gordon Haff
	 �Before you can begin working in artificial intelligence, you

need to acquire some human intelligence.

L e a r n i n g
.

62	�The current state of Linux video 	 Seth Kenlon
editing 2018

	� Linux is a big deal in modern movie-making. Whether you’re
a hobbyist or a professional, you can find Linux software that
meets your needs.

CRE A T i n g
.

82	�Top 8 Python conferences	 Nicholas Hunt-Walker
to attend in 2019

	� Resolve to expand your Python knowledge and network at
these events.

85	�40 top Linux and open source	 Rikki Endsley
conferences in 2019

	� We’ve rounded up a few favorite picks for conferences to
attend in 2019.

89	�5 resolutions for open source 	 Ben Cotton
project maintainers

	� No matter how you say it, good communication is essential
to strong open source communities.

F UTURE
.

All lead images by Opensource.com or the author under CC BY-SA 4.0
unless otherwise noted.

Call for Papers

From the Editor

5

7

68	�6 pivotal moments in open source	 Dave Neary
history	

	� Here’s how open source developed from a printer jam
solution at MIT to a major development model in the tech
industry today.

70	�13 Git tips for Git’s 13th birthday	 John SJ Anderson
	 �Make your revision-control experience more useful and

powerful with these 13 tricks and tips for Git.

74	� Happy birthday, GNOME: 8 reasons 	 Jay LaCroix
to love this Linux desktop

	� On GNOME’s 21st birthday, we highlight some of the features
we enjoy the most.

76	�An insider’s look at drafting 	 Richard Fontana
the GPLv3 license

	�� On the 11th anniversary of the GPLv3 license, learn about its
lasting contributions to free and open source software.

79	� Revisiting the Unix philosophy	 Michael Hausenblas
in 2018

	� The old strategy of building small, focused applications is
new again in the modern microservices environment.

81	�The oldest, active Linux distro, 	 Ben Cotton
Slackware, turns 25

	� Slackware boasts a unique history and a loyal user base.

O l d S c h ool
.

7 Reasons to Write for Us / Follow Us6

59	�7 open source platforms to get started	 Daniel Oh
with serverless computing	

	� Serverless computing is transforming traditional software
development. These open source platforms will help you get
started.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

W o r k i n g
.

10	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

February 3, 2018, was the 20th
anniversary of

the introduction of the term [1] “open source software.” As
open source software grows in popularity and powers some
of the most robust and important innovations of our time, we
reflect on its rise to prominence.

I am the originator of the term “open source software”
and came up with it while executive director at Foresight In-
stitute. Not a software developer like the rest, I thank Linux
programmer Todd Anderson for supporting the term and
proposing it to the group.

This is my account of how I came up with it, how it
was proposed, and the subsequent reactions. Of course,
there are a number of accounts of the coining of the term,
for example by Eric Raymond and Richard Stallman,
yet this is mine, written on
January 2, 2006.

It has never been pub-
lished, until today.

The introduction of the
term “open source soft-
ware” was a deliberate
effort to make this field
of endeavor more under-
standable to newcomers
and to business, which
was viewed as necessary
to its spread to a broader
community of users. The problem with the main earlier
label, “free software,” was not its political connotations,

but that—to newcomers—its seeming focus on price is
distracting. A term was needed that focuses on the key
issue of source code and that does not immediately con-
fuse those new to the concept. The first term that came
along at the right time and fulfilled these requirements
was rapidly adopted: open source.

This term had long been used in an “intelligence” (i.e.,
spying) context, but to my knowledge, use of the term with
respect to software prior to 1998 has not been confirmed.
The account below describes how the term open source
software [2] caught on and became the name of both an
industry and a movement.

Meetings on computer security
In late 1997, weekly meetings were being held at Foresight

Institute to discuss computer
security. Foresight is a non-
profit think tank focused on
nanotechnology and artificial
intelligence, and software se-
curity is regarded as central
to the reliability and security
of both. We had identified
free software as a promising
approach to improving soft-
ware security and reliability
and were looking for ways
to promote it. Interest in free

software was starting to grow outside the programming com-
munity, and it was increasingly clear that an opportunity was

How I coined the term
‘open source’

 by Christine Peterson

Christine Peterson finally publishes her account of that fateful day, 20 years ago.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-open-source
https://opensource.org/osd

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 11

coming to change the world. However, just how to do this
was unclear, and we were groping for strategies.

At these meetings, we discussed the need for a new term
due to the confusion factor. The argument was as follows:
those new to the term “free software” assume it is referring
to the price. Old-timers must then launch into an explana-
tion, usually given as follows: “We mean free as in freedom,
not free as in beer.” At this point, a discussion on software
has turned into one about the price of an alcoholic beverage.
The problem was not that explaining the meaning is impos-
sible—the problem was that the name for an important idea
should not be so confusing to newcomers. A clearer term
was needed. No political issues were raised regarding the
free software term; the issue was its lack of clarity to those
new to the concept.

Releasing Netscape
On February 2, 1998, Eric Raymond arrived on a visit to work
with Netscape on the plan to release the browser code under
a free-software-style license. We held a meeting that night
at Foresight’s office in Los Altos to strategize and refine our
message. In addition to Eric and me, active participants in-
cluded Brian Behlendorf, Michael Tiemann, Todd Anderson,
Mark S. Miller, and Ka-Ping Yee. But at that meeting, the
field was still described as free software or, by Brian, “source
code available” software.

While in town, Eric used Foresight as a base of oper-
ations. At one point during his visit, he was called to the
phone to talk with a couple of Netscape legal and/or mar-
keting staff. When he was finished, I asked to be put on
the phone with them—one man and one woman, perhaps
Mitchell Baker—so I could bring up the need for a new
term. They agreed in principle immediately, but no specific
term was agreed upon.

Between meetings that week, I was still focused on the
need for a better name and came up with the term “open
source software.” While not ideal, it struck me as good
enough. I ran it by at least four others: Eric Drexler, Mark
Miller, and Todd Anderson liked it, while a friend in mar-
keting and public relations felt the term “open” had been
overused and abused and believed we could do better. He
was right in theory; however, I didn’t have a better idea, so
I thought I would try to go ahead and introduce it. In hind-
sight, I should have simply proposed it to Eric Raymond,
but I didn’t know him well at the time, so I took an indirect
strategy instead.

Todd had agreed strongly about the need for a new term
and offered to assist in getting the term introduced. This
was helpful because, as a non-programmer, my influence
within the free software community was weak. My work in
nanotechnology education at Foresight was a plus, but not
enough for me to be taken very seriously on free software
questions. As a Linux programmer, Todd would be listened
to more closely.

The key meeting
Later that week, on February 5, 1998, a group was assem-
bled at VA Research to brainstorm on strategy. Attend-
ing—in addition to Eric Raymond, Todd, and me—were
Larry Augustin, Sam Ockman, and attending by phone,
Jon “maddog” Hall.

The primary topic was promotion strategy, especially
which companies to approach. I said little, but was looking
for an opportunity to introduce the proposed term. I felt that
it wouldn’t work for me to just blurt out, “All you technical
people should start using my new term.” Most of those at-
tending didn’t know me, and for all I knew, they might not
even agree that a new term was greatly needed, or even
somewhat desirable.

Fortunately, Todd was on the ball. Instead of making an
assertion that the community should use this specific new
term, he did something less directive—a smart thing to do
with this community of strong-willed individuals. He simply
used the term in a sentence on another topic—just dropped
it into the conversation to see what happened. I went on
alert, hoping for a response, but there was none at first. The
discussion continued on the original topic. It seemed only he
and I had noticed the usage.

Not so—memetic evolution was in action. A few minutes
later, one of the others used the term, evidently without no-
ticing, still discussing a topic other than terminology. Todd
and I looked at each other out of the corners of our eyes
to check: yes, we had both noticed what happened. I was
excited—it might work! But I kept quiet: I still had low status
in this group. Probably some were wondering why Eric had
invited me at all.

Toward the end of the meeting, the question of terminol-
ogy [3] was brought up explicitly, probably by Todd or Eric.
Maddog mentioned “freely distributable” as an earlier term,
and “cooperatively developed” as a newer term. Eric listed
“free software,” “open source,” and “sourceware” as the
main options. Todd advocated the “open source” model, and
Eric endorsed this. I didn’t say much, letting Todd and Eric
pull the (loose, informal) consensus together around the
open source name. It was clear that to most of those at the
meeting, the name change was not the most important thing
discussed there; a relatively minor issue. Only about 10% of
my notes from this meeting are on the terminology question.

But I was elated. These were some key leaders in the
community, and they liked the new name, or at least didn’t
object. This was a very good sign. There was probably not
much more I could do to help; Eric Raymond was far bet-
ter positioned to spread the new meme, and he did. Bruce
Perens signed on to the effort immediately, helping set up
Opensource.org [4] and playing a key role in spreading the
new term.

For the name to succeed, it was necessary, or at least
highly desirable, that Tim O’Reilly agree and actively use
it in his many projects on behalf of the community. Also

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://wiki2.org/en/Alternative_terms_for_free_software
https://opensource.org/

W o r k i n g
.

12	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

[3]	 �https://wiki2.org/en/Alternative_terms_for_free_software
[4]	� https://opensource.org/
[5]	� http://www.oreilly.com/pub/pr/636
[6]	� http://www.oreilly.com/pub/pr/796
[7]	� https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKL​wHCnL72​

vedxjQkDDP1mXWo6uco/wiki/Alternative_terms_for_
free_software.html

[8]	� http://intelligence.org/
[9]	� http://blueribbonnano.org/
[10]	� https://nasasearch.nasa.gov/search?query=nanotech+​

briefs&affiliate=nasa&utf8=%E2%9C%93/
[11]	 �https://www.foresight.org/Conferences/index.html
[12]	� https://www.foresight.org/about/fi_spons.html
[13]	� https://www.foresight.org/SrAssoc/spring2002/

index.html
[14]	 �http://www.oreilly.com/openbook/freedom/ch11.html
[15]	� https://www.foresight.org/UTF/Unbound_LBW/​

index.html
[16]	� https://www.foresight.org/SrAssoc/99Gathering/

lta_toc.html

Author
Christine Peterson writes, lectures, and briefs the media on
coming powerful technologies, especially nanotechnology,
artificial intelligence, and longevity. She is cofounder and
past president of Foresight Institute, the leading nanotech
public interest group. Foresight educates the public, techni-
cal community, and policymakers on coming powerful tech-
nologies and how to guide their long-term impact.

She serves on the Advisory Board of the Machine Intelli-
gence Research Institute [8], and has served on California’s
Blue Ribbon Task Force on Nanotechnology [9] and the Edi-
torial Advisory Board of NASA’s Nanotech Briefs [10].

She has often directed Foresight Conferences on Molecular
Nanotechnology [11], organized Foresight Institute Feynman
Prizes [12], and chaired Foresight Vision Weekends [13].

She lectures on technology topics to a wide variety of au-
diences, focusing on making complex fields understandable.

Her work is motivated by a desire to help Earth’s envi-
ronment and traditional human communities avoid harm
and instead benefit from expected dramatic advances in
technology. This goal of spreading benefits led to an in-
terest in new varieties of intellectual property including
open source software [14], a term she is credited with
originating.

Wearing her for-profit hat, she chairs the Personalized
Life Extension Conf erence series. In 1991 she coauthored
Unbounding the Future: the Nanotechnology Revolution
(Morrow, full text online [15]), which sketches nanotech-
nology’s potential environmental and medical benefits as
well as possible abuses. An interest in group process led
to coauthoring Leaping the Abyss: Putting Group Genius
to Work (knOwhere Press, 1997, full text online [16]) with
Gayle Pergamit.

helpful would be use of the term in the upcoming official
release of the Netscape Navigator code. By late February,
both O’Reilly & Associates and Netscape had started to use
the term.

Getting the name out
After this, there was a period during which the term was
promoted by Eric Raymond to the media, by Tim O’Reilly
to business, and by both to the programming community. It
seemed to spread very quickly.

On April 7, 1998, Tim O’Reilly held a meeting of key lead-
ers in the field. Announced in advance as the first “Freeware
Summit,” [5] by April 14 it was referred to as the first “Open
Source Summit.” [6]

These months were extremely exciting for open source.
Every week, it seemed, a new company announced plans
to participate. Reading Slashdot became a necessity, even
for those like me who were only peripherally involved. I
strongly believe that the new term was helpful in enabling
this rapid spread into business, which then enabled wider
use by the public.

A quick Google search indicates that “open source” ap-
pears more often than “free software,” but there still is sub-
stantial use of the free software term, which remains useful
and should be included when communicating with audiences
who prefer it.

A happy twinge
When an early account [7] of the terminology change written
by Eric Raymond was posted on the Open Source Initiative
website, I was listed as being at the VA brainstorming meet-
ing, but not as the originator of the term. This was my own
fault; I had neglected to tell Eric the details. My impulse was
to let it pass and stay in the background, but Todd felt oth-
erwise. He suggested to me that one day I would be glad to
be known as the person who coined the name “open source
software.” He explained the situation to Eric, who promptly
updated his site.

Coming up with a phrase is a small contribution, but I ad-
mit to being grateful to those who remember to credit me
with it. Every time I hear it, which is very often now, it gives
me a little happy twinge.

The big credit for persuading the community goes to Eric
Raymond and Tim O’Reilly, who made it happen. Thanks
to them for crediting me, and to Todd Anderson for his role
throughout. The above is not a complete account of open
source history; apologies to the many key players whose
names do not appear. Those seeking a more complete ac-
count should refer to the links in this article and elsewhere
on the net.

Links
[1]	 �https://opensource.com/resources/what-open-source
[2]	� https://opensource.org/osd

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://wiki2.org/en/Alternative_terms_for_free_software
https://opensource.org/
http://www.oreilly.com/pub/pr/636
http://www.oreilly.com/pub/pr/796
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Alternative_terms_for_free_software.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Alternative_terms_for_free_software.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Alternative_terms_for_free_software.html
http://intelligence.org/
http://blueribbonnano.org/
https://nasasearch.nasa.gov/search%3Fquery%3Dnanotech%2Bbriefs%26amp%3Baffiliate%3Dnasa%26amp%3Butf8%3D%25E2%259C%2593/
https://nasasearch.nasa.gov/search%3Fquery%3Dnanotech%2Bbriefs%26amp%3Baffiliate%3Dnasa%26amp%3Butf8%3D%25E2%259C%2593/
https://www.foresight.org/Conferences/index.html
https://www.foresight.org/about/fi_spons.html
https://www.foresight.org/SrAssoc/spring2002/index.html
https://www.foresight.org/SrAssoc/spring2002/index.html
http://www.oreilly.com/openbook/freedom/ch11.html
https://www.foresight.org/UTF/Unbound_LBW/index.html
https://www.foresight.org/UTF/Unbound_LBW/index.html
https://www.foresight.org/SrAssoc/99Gathering/lta_toc.html
https://www.foresight.org/SrAssoc/99Gathering/lta_toc.html
http://intelligence.org/
http://blueribbonnano.org/
https://nasasearch.nasa.gov/search%3Fquery%3Dnanotech%2Bbriefs%26amp%3Baffiliate%3Dnasa%26amp%3Butf8%3D%25E2%259C%2593/
https://www.foresight.org/Conferences/index.html
https://www.foresight.org/about/fi_spons.html
https://www.foresight.org/SrAssoc/spring2002/index.html
http://www.oreilly.com/openbook/freedom/ch11.html
https://www.foresight.org/UTF/Unbound_LBW/index.html
https://www.foresight.org/SrAssoc/99Gathering/lta_toc.html
http://www.oreilly.com/pub/pr/636
http://www.oreilly.com/pub/pr/796
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Alternative_terms_for_free_software.html
https://opensource.com/resources/what-open-source
https://opensource.org/osd

W o r k i n g
..........

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 13

The Linux [1] kernel turned another year older
on Saturday, August 25. Twenty-six

years ago it may have felt to the creator and BDFL [2] Li-
nus Torvalds that Linux would only amount to satisfying the
needs of one. But today we know it has changed the lives
of many.

To celebrate, thirty of our readers share what their first
Linux distro and installation was like. Some of their stories
are magical, some maniacal. And, it’s no surprise that the
tension and passion of these
Linux lovers is palpable.

Read on for their stories.

30 firsts with Linux

Gentoo
Steve Ovens [3] writes:

My first Linux kernel ver-
sion was 2.6.3. It was Gentoo
with Gnome 2. It took more
than four days to compile
on my computer at the time.
I prayed there wasn’t a power outage or failure halfway
through. I remember spending all that time compiling
the OS and getting to the desktop and thinking “Great!
Now what?” Having used only Windows previous to this
adventure with Gentoo, so I didn’t really understand how
getting software worked. I couldn’t just download pack-
ages, and I wasn’t particularly motivated to do anything
in-depth. The system only lasted a few months before I

gave up. I would come back Linux on 2.6.8 with Ubun-
tu 4.10 Warty Warthog. With this release, Linux gained a
permanent foothold in my house, and it would eventually
launch its domination of my
infrastructure and eventually
my personal computers. By
2006, I was running Linux on
everything I could.

Linux
Matthew Helmke [4] writes:

I installed Linux 2.2 on
a server I did not own, and
version 2.6 was the first that
I successfully installed my-
self. My installation involved
lots of invocations, muttering,
driver source downloads,
and compilation. In retro-
spect, I learned it was be-

cause I made a poor hard-
ware choice at the time. My
second was a breeze.

Jet Anderson [5] writes:
It was 1992 if I remember

correctly. I had a spare box of parts sitting near my desk in a
design company where I supported their fleet of Macs. I paid
about $60 for the book “Yggradsil Computing ‘Plug-n-Play’ ​

First time with Linux:
30 installation tales

 by Jen Wike Huger

The Linux kernel turns another year older on August 25.

I was running Linux
on everything I

could.

My second install
was a breeze.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com//resources/linux
https://opensource.com//article/18/7/bdfl
https://opensource.com/users/stratusss
https://opensource.com/users/matthew-helmke
https://opensource.com/users/thatsjet

W o r k i n g
.

14	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

The first kernel I remember compiling was 2.0.32. It was
on a Red Hat Linux 5.0, and I needed to recompile the
kernel to get a driver for the ethernet card working. It took
me a full day, with the help of a friend. It had fvwm95 as
the window manager. It was a lot of fun and a great learn-
ing experience. I was on my hands and knees, with the
back of the comput-
er off, trying to see
what the chip was
on the ethernet card.
As I recall, it was
a D-Link DE-220.
Then I remember having to figure out what the modeline
was for my screen. I hedged my bets and got my comput-
er dual booting with lilo. I don’t think I could have done
it without a friend who could help me figure out the next
thing I needed to learn about!

Greg Pittman [11] writes:
My first Linux was with Red Hat 5.1, or 2.0.34 kernel ver-

sion, according to Wikipedia. The install went pretty well,
it seemed to be well-documented, but it was all about the
drivers: video chip drivers, printer drivers, modem drivers
(remember modems?). Not only that, you had to manually
edit the config file. This was on a Gateway laptop, where I
had set up a dual-boot situation. Gateway was of course, no
help, so you had to research it yourself and find somebody
that talked about a driver
for your hardware. Also,
since I didn’t have a mo-
dem working in Linux, I had
to keep rebooting to Win-
dows to do the research, download the drivers, and save
them on a floppy. One of the happiest days of my life was
about two weeks after the install when I FINALLY got X-win-
dows working. Life was good.

Jay LaCroix [12] writes:
My first installation was Red Hat 7.1 or 7.2, probably 2002

or thereabouts. I was using it on a 300Mhz Pentium III PC
with very limited resources. GNOME wouldnít even start on
it, but I was able to get KDE to work. It was the installation
I used while taking a Linux course at a community college.

Ben Cotton [13] writes:
My first Linux kernel version was 2.4.18 or so—whatever

was shipping in Red Hat Linux 8 at the time. My first Li-
nux install was a dual boot on my desktop my sophomore
year of college. I’d been frustrated with my Windows 2000
installation and
my friend sug-
gested I try this
“Linux” thing.
It was a pretty
basic desktop. I didn’t really know what I was doing at the
time, but I had just started learning my way around FreeBSD
for my part-time job, so it felt pretty cool to run something

Linux” with accom-
panying bootable in-
staller CD. I thought...
“How hard can this

Linux thing be anyway? Besides, it’s bootable!” So, I put in a
graphics card, a hard drive (40 MB if I remember correctly),
and installed some ram... a whole 4 MB. That should be plen-
ty right? Everything went downhill from there. The graphics
card was unsupported. Did I mention the drives were SCSI
not IDE? Thankfully I had ethernet based access to the in-
ternet or I’d have been in the sad world of trying to configure
a modem to download updated drivers for everything. After
about a week of wrestling, I finally got the drive formatted,
kernel installed, and X running. It felt like an incredibly heroic
thing I’d just accomplished. Sitting there with my very first
terminal window open I typed “dir” and got... “dir: command
not found.” It was time to start learning.

Steve Ellis [6] writes:
My first Linux install was 1.3 back in 1996 using the DR1

release of MkLinux on an early PowerPC 601 based Power
Macintosh. The installer was remarkably like early versions of
Red Hat Linux. We were given a CD at Apple’s 1996 WWDC
and it took me a couple of months to persuade my boss that
I wouldn’t totally destroy one of our developer workstations
trying it out. Suddenly, I had a Linux/Unix workstation that
was faster than our aging RS/6000 and pretty much never
looked back from a Linux adoption perspective.

Gary Smith [7] writes:
My first Linux install was Yggdrasil Linux Plug and Play, in

1993. I still have the CDs for nostalgia’s sake.

PowerPC Linux
John Anderson [8] writes:

My first Linux install was PowerPC Linux onto a Power-
Mac 7500. I downloaded the install media in my University
lab and carried it home on a stack of zip disks, and I set up
the PowerMac to dual-boot MacOS 9 and PPC Linux. I only
had the one computer, and the thing I remember most is how

incredibly overjoyed I was when
I got PPP dial-up working on the
Linux side so I could search for
stuff without having to reboot
back into MacOS!

Red Hat Linux
Don Watkins [9] writes:

My first Linux install was Red Hat 5.0. I don’t know the ker-
nel version. I think it came on floppies. I could not get a GUI
and didn’t like it. I thought it was like MS-DOS. The second
install was with a CD on Red Hat 6.1, and that was kernel
version 2.2.12-20, according to Wikipedia. I liked the install
experience, and it was my first successful install with a GUI.
I think it was GNOME, but I’m not sure.

Dave Neary [10] writes:

I carried it home on
a stack of zip disks.

I don’t think I could have
done it without a friend.

Life was good.

I didn’t really know what
I was doing at the time.

How hard can this Linux
thing be anyway?

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/users/greg-p
https://opensource.com/users/jlacroix
https://opensource.com/users/bcotton
https://opensource.com/users/steven-ellis
https://opensource.com/users/greptile
https://opensource.com/users/genehack
https://opensource.com/users/don-watkins
https://opensource.com/users/dneary

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 15

Linux/Fedora since then. A funny story: I remember jump-
ing on an IRC server and going to ask for help. And I typed
something like “I need help getting Xwindows working on
my PC.” I was kicked out of the channel with a reason: It is
not Xwindows, but Xwindow... so, yeah... open source folks
can be tough!

SCO Openserver
Jim Salter [18] writes:

A rough guess for which version is 1.2.0. I can’t find a de-
finitive answer on the kernel it shipped with, but 1.2.0 would
have been pretty current when SCO OpenServer 5 shipped.
The install was absolutely horrible. Did I mention it was SCO
OpenServer? Horrible. This was the foundation of a very
spendy telemarketing predictive dialing system, with SCO
OpenServer 5.0 as the OS and a proprietary application run-
ning the phones over a T-1. Mostly I remember thinking that
I was for absolute certain going to be a FreeBSD person, not
a Linux person. And for quite a while, I was. There wasn’t
really any doubt in my mind then or now that FreeBSD was a
superior system in pretty much every way in the mid-90s; but
at some point in the 2000s Linux blew the doors off and has
been gaining more steam ever since.

Slackware
Tony McCormick [19] writes:

It was exciting to be able to use a Unix like OS at home
so I could run Perl and Bash scripts. During the installation,
there were lots of 3 1/2” floppy drives and flipping through
the Yggdrasil Linux book to figure out how to compile things.
Getting dial-up working so I could login at to the office was
fun too, but great.

Peter Czanik [20] writes:
My first Linux kernel version was 0.99.11 or 0.99.13. Of

course, I don’t remember by heart, but it was Slackware, and
it was not yet kernel 1.0. It was a pretty basic installation, as
my machine did not have much RAM. It was good enough
for a text console and to learn the basics: bash, init scripts,
server applications, reading tons of man pages. My first Li-
nux install involved many floppy disks. And, I actually had to
reinstall it a couple of times as DR-DOS (the other OS on
the machine) and rearrange partition numbers on each boot.

Steve Morris [21] writes:
I was another of those early Slackware users; I picked it up
at a local Comdex show in Vancouver. I rushed home and
proceeded to install the 24 or so floppy disks on my PC.
After what seemed like hours later, I was left with a com-
mand-line shell. All I could remember about that first expe-

non-Windows. I remember taking my computer home for the
summer and not being able to get the modem working, so I
couldn’t get online. My parents still had dial-up then.

Alan Formy-Duval [14] writes:
The first kernel I actually compiled myself seems like the

most appropriate answer. I believe it was probably 2.0.32
or 2.0.33. I was running Red Hat Linux 5.X as my first dis-
tribution. My first installation was onto a basic Dell Optiplex
desktop machine. There were always a few necessary steps
after performing the installation. Those were to complete the
network configuration, configure X-Windows, and compile
the latest kernel. For the kernel, I would head over to kernel.
org and download the latest version. I remember (mostly)
the command used to run the compilation as something like
“make dep clean bzlilo modules modules_install.” It seems
like the compile took an hour or two.

David Both [15] writes:
My first was probably kernel 2.0.32 in Red Hat Linux 5.0

in late 1997. My first install was long and slow on my IBM
ThinkPad—which was even then quite old—with a CD. It re-
quired me to make a number of choices that I did not then
understand, including ones about hardware and the list of
software to install. As I recall, there were no groups of soft-
ware that would install required prerequisites so after the
basic installation I had to endure hours of dependency-hell
to install a few additional top-level packages. Package man-
agement with RPM was a nightmare because it did not deal
at all with finding and installing dependencies like YUM and
DNF. It must have been even worse before RPM. I never did
get the display on my ThinkPad to switch to graphics mode.
But that was probably excellent as it forced me to learn how
to use the Linux command line, and I have been a CLI fan
ever since.

Chris Hermansen [16] writes:
My first kernel version would have been around 2.2.12.

I remember getting Red Hat Linux on floppies shortly after
returning home from my first visit to Chile in November 1999.
If I recall correctly, the first install did not go at all well—it was
on a Thinkpad. The second was on a desktop and it seems
to me that worked just fine. The thing that struck me about
that first brush with Linux, once I got past the huge packet of
floppies, was how generally decent it was compared to my
work machine which at the time was a Sun SPARCStation
something or other.

Anderson Silva [17] writes:
Red Hat Linux 3.0.3 (Picasso), kernel 1.2.13. My first in-

stall was a total failure. I had to open up my Packard Bell
computer, to see if I could identi-
fy if my CD-ROM was Primary or
Secondary Master or Slave, as
my BIOS wouldn’t tell me, and
Linux didn’t auto-detect it, and

then it died on the X install. I only tried the install again six
months later, successfully. I’ve been running on Red Hat

My first install was
a total failure.

I remember thinking I was for
absolute certain going to be a

FreeBSD person, not a Linux person.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/users/jim-salter
https://opensource.com/users/tmccormick
https://opensource.com/users/czanik
https://opensource.com/users/smorris12
https://opensource.com/users/alanfdoss
https://opensource.com/users/dboth
https://opensource.com/users/clhermansen
https://opensource.com/users/ansilva

W o r k i n g
.

16	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

those?) that I had to download with my super fast 9k6 US Ro-
botics modem. Those
were the days.

Eric Eslinger [28]
writes:

I installed some
version of Linux in the 0.99 kernel version time (definitely
prior to 1.0), using SLS, in or around 1993. It was a mo-
ment of spontaneous magic for me. A friend helped me do
things like bring up an xterm, change my shell to the very
cool csh, and learn how to set DISPLAY environment vari-
ables to run graphical applications on my personal comput-

er while running the code on
a server. It was transformative
for me to have an OS I could
not only understand but also
write code for directly.

Yedidyah Bar David [29]
writes:

My first kernel booted was
0.99.11 or so in SLS, but I failed to install it. My first kernel
used was IIRC 0.99.10, from MCC Interim Linux, which
managed to install with just 2 MB RAM (because it had a
documented option to not use a ramdisk, but directly from
a floppy). This install was hard and took several weeks!
I remember that SLS (which is what was recommended
to me at the time, in 1993) didn’t install with 2 MB RAM.
So, I consulted people, tried HJ Lu’s Boot/Root floppies
which did boot and work, then found MCC and installed
it, which worked. Shortly thereafter, I compiled a kernel
(0.99.14?), which took around 24 hours, then I bought
another 2 MB RAM for my machine. Then, the compile
took about an hour. I used MCC for some time, then tried
SLS again. SLS’s installation with 4 MB RAM was reason-
able, but somewhat ugly with white on black and question
prompts and answers. A few months later a friend told me
he installed Slackware, and “it was so much nicer!,” which
indeed it was true. It was in color and fullscreen, though
still in text mode. So, I moved to Slackware for two years,
then finally installed Debian, and stayed with it until two
years ago. Also, I used it on my first laptop as an employ-
ee at Red Hat. Three years later, I decided it was time to
move to RHEL!

Ubuntu
Kedar Vijay Kulkarni [30] writes:

My first Linux was Ubuntu. I had to install it as it was
mandated in our curriculum at MIT College of Engineering
in Pune, India. The installation itself was very easy and
straightforward. The only option I had to get right was
“Install Ubuntu alongside Windows” in order to make sure
I didn’t wipe out my Windows partition. Something that I
distinctly remember about my first Linux install was learn-
ing how to create a bootable USB drive and learning what

rience is, “Now what do I
do?” It lasted on the ma-
chine for about three months before it was mothballed and I
purchased a copy of Red Hat Linux 5.0 on CD.

Kevin Cole [22] writes:
I started with an ancient Slackware distribution sold by a

company called Trans-America. I cannot recall the kernel but
the era was circa 1993-1994. The thing I remember most
was that halfway through the install, I had to switch CDs and
when I did, it said: “What’s a CD?” (It could no longer find the
driver.) Thankfully, even back then, there was an online com-
munity willing to help and someone lent me to a floppy that
would allow me to continue. That first install was... “OMG,
I’ve got a friggin’ mainframe on my desk!” I wrote more about
that adventure in this article [23].

Andy Thornton [24] writes:
Pre-version 2, I remember the buzz around a new 2.0 kernel

coming out! I installed Slackware because I had met a mate
in Boston who showed me around it, and I had to build a box
when I got home. I used it entirely from the shell and it went on
to be a MUD server I hosted out of my bedroom. I had a script
to dial my internet provider during off-peak hours to save on bills
(this was in the UK). I spent an entire weekend downloading the
equivalent of 80 floppy disks on a 54k modem, and once I had it
all down, I transferred it to a Jazz drive from Iomega so I had a
copy. I would pray no one rang the house during the download
as it would break and I would have to recover it or start all over
again. I will admit, it was a fun weekend.

Daniel Oh [25] writes:
My first install was Slackware, and it took a lot of time for

me to stand up Linux. I got used to doing hands-on stuff
with Windows, but it was so exciting to try out open source
technology. There were many floppy drives involved with my
first installation, and I had to use a few Linux books to learn
how to build, install, and configure all matters of the OS pro-
grams. It took a lot of time but it was really fun for me.

Softlanding Linux System
Jim Hall [26] writes:

My first Linux distribution was Softlanding Linux System
(SLS) 1.03, with Linux kernel 0.99 alpha patch level 11. In-
stallation required a whopping 2 MB of RAM, or 4 MB if you
wanted to compile programs, and 8 MB to run X Windows.
Linux added modules in 1.0, so this was pre-modules. Ev-
erything had to be compiled in.

Michael Schulz [27] writes:
IIRC, my first version was 0.98-4 pl 10 on the SLS distro.

There were twenty-four 1.44 MB floppy disks (remember

There were 24 floppy
disks (remember those?)

It was a moment
of spontaneous
magic for me.

I would pray no one rang the
house during the download.

Now what do I do?

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/users/eric-eslinger
https://opensource.com/users/didib
https://opensource.com/users/kkulkarn
https://opensource.com/users/kjcole
https://opensource.com/life/15/11/my-open-source-story-kevin-cole
https://opensource.com/users/andrew-thornton
https://opensource.com/users/daniel-oh
https://opensource.com/users/jim-hall
https://opensource.com/users/mschulz

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 17

Links
[1]	 �https://opensource.com//resources/linux
[2]	 �https://opensource.com//article/18/7/bdfl
[3]	 �https://opensource.com/users/stratusss
[4]	� https://opensource.com/users/matthew-helmke
[5]	 �https://opensource.com/users/thatsjet
[6]	� https://opensource.com/users/steven-ellis
[7]	� https://opensource.com/users/greptile
[8]	 �https://opensource.com/users/genehack
[9]	� https://opensource.com/users/don-watkins
[10]	 �https://opensource.com/users/dneary
[11]	� https://opensource.com/users/greg-p
[12]	 �https://opensource.com/users/jlacroix
[13]	� https://opensource.com/users/bcotton
[14]	 �https://opensource.com/users/alanfdoss
[15]	� https://opensource.com/users/dboth
[16]	 �https://opensource.com/users/clhermansen
[17]	 �https://opensource.com/users/ansilva
[18]	 �https://opensource.com/users/jim-salter
[19]	 �https://opensource.com/users/tmccormick
[20]	 �https://opensource.com/users/czanik
[21]	 �https://opensource.com/users/smorris12
[22]	� https://opensource.com/users/kjcole
[23]	� https://opensource.com/life/15/11/my-open-source-story-

kevin-cole
[24]	 �https://opensource.com/users/andrew-thornton
[25]	 �https://opensource.com/users/daniel-oh
[26]	� https://opensource.com/users/jim-hall
[27]	� https://opensource.com/users/mschulz
[28]	� https://opensource.com/users/eric-eslinger
[29]	� https://opensource.com/users/didib
[30]	 �https://opensource.com/users/kkulkarn
[31]	 �https://opensource.com/users/classywhetten
[32]	� https://opensource.com/users/dbclinton
[33]	� https://opensource.com/users/kreyc

Author
Jen has been an editor on the Opensource.com team for six
years. In that time, she’s worked with countless developers
and engineers, helping them with the magic of turning their
technical expertise and experience into written form. On any
given day, you’ll find her managing the website’s publication
schedule and editorial workflow (on kanban boards), as well
as brainstorming the next big article.

dual partition is and looks like. I remember all the excite-
ment of getting a whole new operating system entirely
for free. Plus, the Unity GUI was a refreshing break from
Windows XP.

Brian Whetten [31] writes:
My first Linux kernel version was 2.6.32 as part of Lucid

Lynx Ubuntu version 10.04. My first Linux install was mem-
orable because after helping others install Windows XP and
older versions of MacOS, Linux installed the fastest. Even
though I was only in junior high at the time, I knew that I had
found something special. It was snappier than any computer
I had used at school or home (with the exception of some
video acceleration issues). I was just excited to finally have
a machine I could freely learn and explore in, with no knowl-
edge blocks and great searchable documentation. Blender
ran incredibly well on it versus the comparable Mac my fam-
ily-owned computer.

David Clinton [32] writes:
My first Linux experience was installing Ubuntu 7.10 (ker-

nel version 2.6.22) from Windows XP using Wubi. That part
was easy. Getting it to work as an LTSP server for a network
of thin clients booting via PXE was considerably more com-
plicated. I can’t remember whether I actually got it all running
from the Wubi version or whether that had to wait until my
first full install, but the triumph of success was worth the ef-
fort... even if it first required diagnosing a flaky port on the old
network switch I was using.

Kyle Conway [33] writes:
My first install was Ubuntu 8.04, Hardy Heron, which

seems to have run Linux kernel 2.6.24. It was a WUBI in-
stall (the relative simplicity of an *.exe that wouldn’t “break”
my computer convinced me to give it a try). There’s a great

thread on the Ubuntu forums where I got the help I needed
(getting my WUBI install back) and move fulltime to Linux.
I’m coming up on a decade! It was unbelievable to me that I
could download this at no cost, that it ran many of the appli-
cations that I already used (e.g. Firefox), that I could share
it with others, that it had useful software installed by default,
and that it didn’t require license keys—it just worked.

It didn’t require license
keys—it just worked.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com//resources/linux
https://opensource.com//article/18/7/bdfl
https://opensource.com/users/stratusss
https://opensource.com/users/matthew-helmke
https://opensource.com/users/thatsjet
https://opensource.com/users/steven-ellis
https://opensource.com/users/greptile
https://opensource.com/users/genehack
https://opensource.com/users/don-watkins
https://opensource.com/users/dneary
https://opensource.com/users/greg-p
https://opensource.com/users/jlacroix
https://opensource.com/users/bcotton
https://opensource.com/users/alanfdoss
https://opensource.com/users/dboth
https://opensource.com/users/clhermansen
https://opensource.com/users/ansilva
https://opensource.com/users/jim-salter
https://opensource.com/users/tmccormick
https://opensource.com/users/czanik
https://opensource.com/users/smorris12
https://opensource.com/users/kjcole
https://opensource.com/life/15/11/my-open-source-story-kevin-cole
https://opensource.com/life/15/11/my-open-source-story-kevin-cole
https://opensource.com/users/andrew-thornton
https://opensource.com/users/daniel-oh
https://opensource.com/users/jim-hall
https://opensource.com/users/mschulz
https://opensource.com/users/eric-eslinger
https://opensource.com/users/didib
https://opensource.com/users/kkulkarn
https://opensource.com/users/classywhetten
https://opensource.com/users/dbclinton
https://opensource.com/users/kreyc
http://www.Opensource.com
https://opensource.com/users/classywhetten
https://opensource.com/users/dbclinton
https://opensource.com/users/kreyc

W o r k i n g
.

18	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

I use open source tools whenever
and wherever I

can. I returned to college a while ago to earn a master’s de-
gree in educational leadership. Even though I switched from
my favorite Linux laptop to a MacBook Pro (since I wasn’t sure
Linux would be accepted on campus), I decided I would keep
using my favorite tools, even on macOS, as much as I could.

Fortunately, it was easy, and no professor ever questioned
what software I used. Even so, I couldn’t keep a secret.

I knew some of my classmates would eventually assume
leadership positions in school districts, so I shared informa-
tion about the open source applications described below
with many of my macOS or Windows-using classmates.
After all, open source software is really about freedom and
goodwill. I also wanted them to know that it would be easy
to provide their students with world-class applications at

little cost. Most of them were surprised and amazed be-
cause, as we all know, open source software doesn’t have
a marketing team except users like you and me.

My macOS learning curve
Through this process, I learned some of the nuances of
macOS. While most of the open source tools worked as I
was used to, others required different installation methods.
Tools like yum [1], DNF [2], and [3] do not exist in the macOS
world—and I really missed them.

Some macOS applications required dependencies and
installations that were more difficult than what I was accus-
tomed to with Linux. Nonetheless, I persisted. In the process,
I learned how I could keep the best software on my new plat-
form. Even much of macOS’s core is open source [4].

Also, my Linux background made it easy to get comfort-
able with the macOS command line. I still use it to create and
copy files, add users, and use other utilities [5] like cat, tac,
more, less, and tail.

15 great open source applications for macOS
• �The college required that I submit most of my work elec-

tronically in DOCX format, and I did that easily, first with
OpenOffice [6] and later using LibreOffice [7] to produce
my papers.

• �When I needed to produce graphics for presentations,
I used my favorite graphics applications, GIMP [8] and
Inkscape [9].

15 open source applications
for macOS

 by Don Watkins

Dedicated open source users won’t find it hard to use their
favorite applications on non-Linux operating systems.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Yum_%28software%29
https://en.wikipedia.org/wiki/DNF_%28software%29
https://en.wikipedia.org/wiki/APT_%28Debian%29APT
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://www.gnu.org/software/coreutils/coreutils.html
https://www.openoffice.org/
https://www.libreoffice.org/
https://www.gimp.org/
https://inkscape.org/en/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 19

• �My favorite podcast creation tool is Audacity [10]. It’s
much simpler to use than the proprietary application that
ships with the Mac. I use it to record interviews and create
soundtracks for video presentations.

• �I discovered early on that I could use the VideoLan [11]
(VLC) media player on macOS.

• �macOS’s built-in proprietary video creation tool is a good
product, but you can easily install and use OpenShot [12],
which is a great content creation tool.

• �When I need to analyze networks for my clients, I use
the easy-to-install Nmap [13] (Network Mapper) and Wire-
shark [14] tools on my Mac.

• �I use VirtualBox [15] for macOS to demonstrate Raspbi-
an, Fedora, Ubuntu, and other Linux distributions, as well
as Moodle, WordPress, Drupal, and Koha when I provide
training for librarians and other educators.

• �I make boot drives on my MacBook using Etcher.io [16]. I
just download the ISO file and burn it on a USB stick drive.

• �I think Firefox [17] is easier and more secure to use than
the proprietary browser that comes with the MacBook Pro,
and it allows me to synchronize my bookmarks across op-
erating systems.

• �When it comes to eBook readers, Calibre [18] cannot be
beaten. It is easy to download and install, and you can
even configure it for a classroom eBook server [19] with
a few clicks.

• �Recently I have been teaching Python to middle school stu-
dents, I have found it is easy to download and install Python
3 and the IDLE3 editor from Python.org [20]. I have also en-
joyed learning about data science and sharing that with stu-
dents. Whether you’re interested in Python or R, I recommend
you download and install [21] the Anaconda distribution [22].
It contains the great iPython editor, RStudio, Jupyter Note-
books, and JupyterLab, along with some other applications.

• �HandBrake [23] is a great way to turn your old home video
DVDs into MP4s, which you can share on YouTube, Vimeo,
or your own Kodi [24] server on macOS.

Links
[1]	 �https://en.wikipedia.org/wiki/Yum_(software)
[2]	 �https://en.wikipedia.org/wiki/DNF_(software)
[3]	� https://en.wikipedia.org/wiki/APT_(Debian)APT
[4]	� https://developer.apple.com/library/archive/documentation/

MacOSX/Conceptual/OSX_Technology_Overview/
SystemTechnology/SystemTechnology.html

[5]	� https://www.gnu.org/software/coreutils/coreutils.html
[6]	� https://www.openoffice.org/
[7]	 �https://www.libreoffice.org/
[8]	� https://www.gimp.org/
[9]	� https://inkscape.org/en/
[10]	� https://www.audacityteam.org/
[11]	� https://www.videolan.org/index.html
[12]	� https://www.openshot.org/
[13]	 https://nmap.org/�
[14]	� https://www.wireshark.org/
[15]	 �https://www.virtualbox.org/
[16]	 �https://etcher.io/
[17]	 �https://www.mozilla.org/en-US/firefox/new/
[18]	� https://calibre-ebook.com/
[19]	� https://opensource.com/article/17/6/raspberrypi-ebook-

server
[20]	 �https://www.python.org/downloads/release/python-370/
[21]	� https://opensource.com/article/18/4/getting-started-

anaconda-python
[22]	� https://www.anaconda.com/download/#macos
[23]	� https://handbrake.fr/
[24]	� https://kodi.tv/download

Author
Don is an educator, education technology specialist, en-
trepreneur, and open source advocate. He holds an M.A.
in Educational Psychology and an MSED in Educational
Leadership. As a Linux system administrator and CCNA,
he is an expert at virtualization using Virtual Box. Follow
him at @Don_Watkins

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.audacityteam.org/
https://www.videolan.org/index.html
https://www.openshot.org/
https://nmap.org/
https://www.wireshark.org/
https://www.virtualbox.org/
https://etcher.io/
https://www.mozilla.org/en-US/firefox/new/
https://calibre-ebook.com/
https://opensource.com/article/17/6/raspberrypi-ebook-server
https://www.python.org/downloads/release/python-370/
https://opensource.com/article/18/4/getting-started-anaconda-python
https://www.anaconda.com/download/
https://handbrake.fr/
https://kodi.tv/download
https://en.wikipedia.org/wiki/Yum_%28software%29
https://en.wikipedia.org/wiki/DNF_%28software%29
https://en.wikipedia.org/wiki/APT_%28Debian%29APT
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/OSX_Technology_Overview/SystemTechnology/SystemTechnology.html
https://www.gnu.org/software/coreutils/coreutils.html
https://www.openoffice.org/
https://www.libreoffice.org/
https://www.gimp.org/
https://inkscape.org/en/
https://www.audacityteam.org/
https://www.videolan.org/index.html
https://www.openshot.org/
https://nmap.org/
https://www.wireshark.org/
https://www.virtualbox.org/
https://etcher.io/
https://www.mozilla.org/en-US/firefox/new/
https://calibre-ebook.com/
https://opensource.com/article/17/6/raspberrypi-ebook-server
https://opensource.com/article/17/6/raspberrypi-ebook-server
https://www.python.org/downloads/release/python-370/
https://opensource.com/article/18/4/getting-started-anaconda-python
https://opensource.com/article/18/4/getting-started-anaconda-python
https://www.anaconda.com/download/
https://handbrake.fr/
https://kodi.tv/download
https://twitter.com/Don_Watkins

W o r k i n g
.

20	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

I’m going to let you in on a secret: For years I
hated mobile development. I

wanted to like it—mobile was the future! It was cool! It was
low-power! It was a way to connect with users whose first
exposure to computers did not come from traditional desk-
top platforms! And yet… development was a slow, frustrating
experience for me. Instead, I sequestered myself over in the
entirely problem-free area of web development and mourned
the disappearance of the HTML blink tag (kidding).

Then, I discovered Flutter [1], an open source mobile
app SDK developed by Goo-
gle that enables developers
to use the same codebase
to create mobile apps for iOS
and Android.

Once I found Flutter, I
found that mobile develop-
ment could be joyful.

Yes, joyful.
How, you ask? To show

you what I mean, let’s walk
through writing a very simple
Flutter app that queries Stack
Overflow. As the self-respect-
ing open source developer that you are, I’m sure you want to
keep on top of the questions people are asking about your
software on Stack Overflow. This app allows you to search
for questions about a specific topic.

Lightning-fast development cycle
Traditional compilers are trouble. You know how it goes: You
hit “compile,” and the next thing you know you’re 10 tabs
deep into cute kitten photos—and it’s lunchtime. Fortunately,
when I worked on the web, interpreters and Just In Time
(JIT) compilers saved me from my kitten tendencies, making
“edit, save, refresh” the name of the game.

Flutter takes this quick development idea one step further:
“edit, save.” Although it’s not a web technology, you can see
your changes on your mobile device’s screen in less than

a second, thanks to Flutter’s
hot reload.

Typically you get this fast
development cycle by using
fancy, dynamically typed
scripting languages, with
the downside of pushing er-
rors to runtime rather than
catching them beforehand
at compile-time. The second
common drawback is their
performance is not as zippy
as compiled languages. By
using Dart as its program-

ming language of choice, Flutter can sidestep both of these
issues. Dart has a strong, sound type system that allows you
to catch problems before demoing That Part of the Code-
base With Less Than Ideal Test Coverage.

4 ways Flutter
makes mobile app
development delightful

 by Emily Fortuna

Open source mobile SDK simplifies and speeds iOS and Android app development.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://flutter.io

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 21

Second, Dart has two modes:
1. �running in “interpreted” mode on the Dart virtual machine,

which allows that joyful, hot reload experience, and;
2. �compiled mode, which compiles your app down to native

machine code when you’re ready to release your app.
Given these features, Dart is uniquely suited to provide de-
velopers with great development and release experiences
for Flutter.

Finally, Dart was designed to be easy to learn, so if you’ve
worked with any C-style language like Java, C++, or JavaS-
cript, it will feel familiar.

Cool features, such as Streams and Futures
Time to start coding! Our app will use the Stack Overflow
API to look for questions about Flutter that need responses,
so that you, the intrepid open source project owner that you
are, can help your community by keeping them informed.
The simplest way to get that information in Dart is with an
asynchronous request:

final url = 'https://api.stackexchange.com/2.2/questions?

order=desc&sort=activity&tagged=flutter&site=stackoverflow';

var result = await http.get(url);

print(result.body);

The result prints out some JSON, looking something like this:

{

 "items": [

 {

 "tags": [

 "android",

 "ios",

 "flutter"

],

 "owner": {

 "reputation": 1,

 ...

 },

 is_answered: false,

 "view_count": 1337,

 "title": "How to make a pretty Flutter app?"

...

}

In this code snippet, http.get is returning a Future<Request>,
which means that the result will be available in the future of type
(Http)Request. Even though we’re making a round trip to the
server, we don’t need to pass in a callback; we can just use
the await keyword to wait for a response. Flutter has Future-
Builder and StreamBuilder widgets to build corresponding
UI components, given the results of a Future or a Stream.

A Stream is just like a Future, except that it can provide re-
sults asynchronously multiple times instead of just once. In our

app, we’ll create a Stream where we can listen for updates on
our Stack Overflow questions of interest. Since the Stack Over-
flow API doesn’t provide push notifications out of the box, we
construct our own stream using a StreamController and add
updated Stack Overflow information whenever we get it:

final controller = StreamController<List<String>>();

void refreshQuestions() async {

 var result = await http.get(url);

 Map decoded = json.decode(result.body);

 List items = decoded['items'];

 controller.add(items

 .where((item) => !item['is_answered'])

 .map<String>((item) => item['title'])

 .toList());

}

In refreshQuestions, we make a new call to the Stack Over-
flow API, then filter the results so we’re only looking at ques-
tions that have not been answered. From those results, we
pull out the titles of the questions to display them in our app.

Flutter conveniently provides a StreamBuilder widget
that can automatically update what the user sees in the app
based on the contents of a stream. In this case, we provide
the input stream source (controller.stream) and display
different results de-
pending on whether
we successfully re-
ceived data or not
(in this case building
terribly exciting Text
widgets). Stream-
Builder also conve-
niently takes care of
unsubscribing itself
from the stream and cleaning up after itself.

StreamBuilder(

 stream: controller.stream,

 builder: (BuildContext context, AsyncSnapshot<List<String>>

snapshot) {

 if (snapshot.hasError)

 return Text('Error ${snapshot.error}');

 else if (�snapshot.connectionState == ConnectionState.

waiting) {

 return Text('Receiving questions...');

 }

 return Expanded(

 child: ListView(

 children: snapshot.data

 .map<Widget>((info) => Text(info))

 .toList()));

 });

StreamBuilder also
conveniently takes care

of unsubscribing itself
from the stream and

cleaning up after itself.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

W o r k i n g
.

22	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

 return CupertinoButton(

 child: child,

 onPressed: onPressed,

);

 } else {

 return FloatingActionButton(

 icon: icon,

 onPressed: onPressed,

);

 }

 }

}

Then, in our Flutter app, we can simply construct:

return PlatformAdaptiveButton(

 child: const Text('Refresh'),

 icon: const Icon(Icons.refresh),

 onPressed: refreshQuestions);

Which, when pressed, requests updates from the Stack
Overflow API. Flutter’s roadmap calls for more built-in
ways to have platform adaptive components in your code,
so stay tuned.

A handful of other app development systems provides
cross-platform functionality, too: React Native, Xamarin,
and Ionic, to name a few. With React Native and Ionic, you
develop in JavaScript, which has the potential for less type
safety (and therefore more unwanted surprises at runtime),
and the code is interpreted or JITed. With Xamarin, you get
strong type-safety guarantees with C# and, depending on
the target platform, the code is compiled to native, JITed,
or run on a virtual machine. Flutter compiles down to native
machine code on both iOS and Android, giving it predict-
able, speedy performance.

Customization
”But Emily,” you say. “I work at an agency and I simply can’t
have all the apps I create look the same! I need them to
look distinctive and add those stylish touches, like my signa-
ture, tasteful usage of Comic Sans!” Never fear, my aesthete
friends. Flutter really shines in this area.

Because Flutter is drawing every pixel to the screen, ev-
erything is customizable. Don’t like how that built-in Cuper-
tinoButton is behaving? Make a subclass and design it
yourself. Think solid-color app bars are so passé? Write your
own widget. In our Stack Overflow app, I wrote a custom app
bar that has a custom font and a gradient color scheme to
distinguish it from all those other boring app bars—and it’s
not even much code:

@override

Widget build(BuildContext context) {

 final double statusBarHeight = MediaQuery.of(context).padding.top;

One technology for both iOS and Android
”Don’t Repeat Yourself” is a common software engineering
mantra, yet the mobile development world seems to be in
denial. All too often, companies spin up separate iOS and
Android app teams, each of which needs to solve the same
problems twice. With Flutter, you can write in Dart and de-
ploy natively to both iOS and Android. Scrolling behavior,
system fonts, and other fundamental interaction compo-
nents automatically default for the platform you’re using. At a
higher level, Flutter provides Cupertino and Material Design
widget libraries to get the look and feel users expect on their
platform of choice.

In our Stack Overflow app, we want to have a “Get New
Results” button to see if there are new questions that need
our attention. We’ll write a PlatformAdaptiveButton whose
behavior depends on the platform we’re running on:

class PlatformAdaptiveButton extends StatelessWidget {

 final Widget child;

 final Widget icon;

 final VoidCallback onPressed;

 PlatformAdaptiveButton({�Key key, this.child, this.icon, this.

onPressed})

 : super(key: key);

 @override

 Widget build(BuildContext context) {

 if (Theme.of(context).platform == TargetPlatform.iOS) {

The result of the previous code. (I don’t understand why no
design school would accept me.)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 23

 return Container(

 padding: EdgeInsets.only(top: statusBarHeight),

 height: statusBarHeight * 4,

 child: Center(

 child: Text(

 title,

 style: const TextStyle(

 color: Colors.white, fontFamily: 'Kranky', fontSize: 36.0),

),

),

 decoration: BoxDecoration(

 gradient: LinearGradient(

 colors: [

 Colors.deepOrange,

 Colors.orangeAccent,

],

),

),

);

}

You can see the final result below.
All the code I wrote for this article can be found on GitHub

at Stack Overflow Viewer [2].

Intrigued?
There is so much more we can do! However, further
customization is left as an exercise to the reader.

Links
[1]	 �https://flutter.io
[2]	 �https://github.com/efortuna/stack_overflow_viewer

Author
Emily Fortuna is a senior software engineer on the Dart team
at Google. When not hacking on compilers and evangeliz-
ing the awesomeness of Flutter, she can be found working
on improving fairness in machine learning or acting on the
stage and screen. She is an avid member of the nerdy joke
appreciation society.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/efortuna/stack_overflow_viewer
https://flutter.io
https://github.com/efortuna/stack_overflow_viewer

W o r k i n g
.

24	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

In 2018, PowerShell Core [1] became generally
available [2] under an Open Source

(MIT [3]) license. PowerShell is hardly a new technology.
From its first release for Windows in 2006, PowerShell’s
creators sought [4] to incorporate the power and flexibility
of Unix shells while remedying their perceived deficien-
cies, particularly the need for text manipulation to derive
value from combining commands.

Five major releases later, PowerShell Core allows the
same innovative shell and command environment to run
natively on all major operating systems, including OS X and
Linux. Some (read: almost everyone) may still scoff at the
audacity and/or the temerity of this Windows-born interlop-
er to offer itself to platforms that have had strong shell en-
vironments since time immemorial (at least as defined by a
millennial). In this post, I hope to make the case that Pow-
erShell can provide advantages to even seasoned users.

Consistency across platforms
If you plan to port your scripts from one execution environ-
ment to another, you need to make sure you use only the
commands and syntaxes that work. For example, on GNU
systems, you would obtain yesterday’s date as follows:

date --date="1 day ago"

On BSD systems (such as OS X), the above syntax
wouldn’t work, as the BSD date utility requires the fol-
lowing syntax:

date -v -1d

Because PowerShell is licensed under a permissive license
and built for all platforms, you can ship it with your application.
Thus, when your scripts run in the target environment, they’ll
be running on the same shell using the same command imple-
mentations as the environment in which you tested your scripts.

Objects and structured data
*nix commands and utilities rely on your ability to consume
and manipulate unstructured data. Those who have lived
for years with sed grep and awk may be unbothered by this
statement, but there is a better way.

Let’s redo the yesterday’s date example in PowerShell. To
get the current date, run the Get-Date cmdlet (pronounced
“commandlet”):

Power(Shell) to the people
 by Yev Bronshteyn

Type less, write cleaner scripts, run consistently across platforms, and other reasons why Linux and
OS X users can fall in love with PowerShell.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/PowerShell/PowerShell/blob/master/README.md
https://blogs.msdn.microsoft.com/powershell/2018/01/10/powershell-core-6-0-generally-available-ga-and-supported/
https://spdx.org/licenses/MIT
http://www.jsnover.com/Docs/MonadManifesto.pdf

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 25

> Get-Date

Sunday, January 21, 2018 8:12:41 PM

The output you see isn’t really a string of text. Rather, it is
a string representation of a .Net Core object. Just like any
other object in any other OOP environment, it has a type and
most often, methods you can call.

Let’s prove this:

> $(Get-Date).GetType().FullName

System.DateTime

The $(...) syntax behaves exactly as you’d expect from
POSIX shells—the result of the evaluation of the command
in parentheses is substituted for the entire expression. In
PowerShell, however, the $ is strictly optional in such ex-
pressions. And, most importantly, the result is a .Net object,
not text. So we can call the GetType() method on that object
to get its type object (similar to Class object in Java), and the
FullName property [5] to get the full name of the type.

So, how does this object-orientedness make your life easier?
First, you can pipe any object to the Get-Member cmdlet to

see all the methods and properties it has to offer.

> (Get-Date) | Get-Member

PS �/home/yevster/Documents/ArticlesInProgress> $(Get-Date) |

Get-Member

 TypeName: System.DateTime

Name MemberType Definition

---- ---------- ----------

Add Method datetime Add(timespan value)

AddDays Method datetime AddDays(double value)

AddHours Method datetime AddHours(double value)

AddMilliseconds Method �datetime AddMilliseconds(double

value)

AddMinutes Method �datetime AddMinutes(double

value)

AddMonths Method datetime AddMonths(int months)

AddSeconds Method �datetime AddSeconds(double

value)

AddTicks Method datetime AddTicks(long value)

AddYears Method datetime AddYears(int value)

CompareTo Method �int CompareTo(System.Object

value), int ...

You can quickly see that the DateTime object has an AddDays
that you can quickly use to get yesterday’s date:

> (Get-Date).AddDays(-1)

Saturday, January 20, 2018 8:24:42 PM

To do something slightly more exciting, let’s call Yahoo’s
weather service (because it doesn’t require an API token)
and get your local weather.

$city="Boston"

$state="MA"

$url="�https://query.yahooapis.com/v1/public/

yql?q=select%20*%20from%20weather.forecast%20

where%20woeid%20in%20(select%20woeid%20from%20

geo.places(1)%20where%20text%3D%22${city}%2C%20

${state}%22)&format=json&env=store%3A%2F%2Fdatatables.

org%2Falltableswithkeys"

Now, we could do things the old-fashioned way and just run
curl $url to get a giant blob of JSON, or...

$weather=(Invoke-RestMethod $url)

If you look at the type of $weather (by running echo $weather.
GetType().FullName), you will see that it’s a PSCustomObject.
It’s a dynamic object that reflects the structure of the JSON.

And PowerShell will be thrilled to help you navigate
through it with its tab completion. Just type $weather. (mak-
ing sure to include the “.”) and press Tab. You will see all the
root-level JSON keys. Type one, followed by a “.”, press Tab
again, and you’ll see its children (if any).

Thus, you can easily navigate to the data you want:

> echo $weather.query.results.channel.atmosphere.pressure

1019.0

> echo $weather.query.results.channel.wind.chill

41

And if you have JSON or CSV lying around (or returned by
an outside command) as unstructured data, just pipe it into
the ConvertFrom-Json or ConvertFrom-CSV cmdlet, re-
spectively, and you can have your data in nice clean objects.

Computing vs. automation
We use shells for two purposes. One is for computing,
to run individual commands and to manually respond to
their output. The other is automation, to write scripts that
execute multiple commands and respond to their output
programmatically.

A problem that most of us have learned to overlook is that
these two purposes place different and conflicting require-
ments on the shell. Computing requires the shell to be la-
conic. The fewer keystrokes a user can get away with, the
better. It’s unimportant if what the user has typed is barely
legible to another human being. Scripts, on the other hand,
are code. Readability and maintainability are key. And here,
POSIX utilities often fail us. While some commands do offer

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties

W o r k i n g
.

26	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

automatic and consistent parameter name truncation, while
still enjoying a rich, readable syntax for scripting.

So... friends?
There are just some of the advantages of PowerShell. There
are more features and cmdlets I haven’t discussed (check
out Where-Object [6] or its alias ? if you want to make grep
cry). And hey, if you really feel homesick, PowerShell will
be happy to launch your old native utilities for you. But give
yourself enough time to get acclimated in PowerShell’s ob-
ject-oriented cmdlet world, and you may find yourself choos-
ing to forget the way back.

Links
[1]	� https://github.com/PowerShell/PowerShell/blob/master/

README.md
[2]	 �https://blogs.msdn.microsoft.com/powershell/2018/01/10/

powershell-core-6-0-generally-available-ga-and-
supported/

[3]	� https://spdx.org/licenses/MIT
[4]	� http://www.jsnover.com/Docs/MonadManifesto.pdf
[5]	� https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/classes-and-structs/properties
[6]	 �https://docs.microsoft.com/en-us/powershell/

module/microsoft.powershell.core/where-
object?view=powershell-6

Author
Yev Bronshteyn is a software engineer with an open source
governance bend, and an occasional developer outreacher.
All opinions are my own. Brain droppings here.

both laconic and readable syntaxes (e.g. -f and --force)
for some of their parameters, the command names them-
selves err on the side of brevity, not readability.

PowerShell includes several mechanisms to eliminate that
Faustian tradeoff.

First, tab completion eliminates typing of argument names.
For instance, type Get-Random -Mi, press Tab and Power-
Shell will complete the argument for you: Get-Random -Min-
imum. But if you really want to be laconic, you don’t even
need to press Tab. For instance, PowerShell will understand

Get-Random -Mi 1 -Ma 10

because Mi and Ma each have unique completions.
You may have noticed that all PowerShell cmdlet names

have a verb-noun structure. This can help script readability,
but you probably don’t want to keep typing Get- over and
over in the command line. So don’t! If you type a noun with-
out a verb, PowerShell will look for a Get- command with
that noun.

Caution: although PowerShell is not case-sensitive, it’s a
good practice to capitalize the first letter of the noun when
you intend to use a PowerShell command. For example, typ-
ing date will call your system’s date utility. Typing Date will
call PowerShell’s Get-Date cmdlet.

And if that’s not enough, PowerShell has aliases to create
simple names. For example, if you type alias -name cd,
you will discover the cd command in PowerShell is itself an
alias for the Set-Location command.

So to review—you get powerful tab completion, aliases,
and noun completions to keep your command names short,

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?Fview=Dpowershell-6
https://github.com/PowerShell/PowerShell/blob/master/README.md
https://github.com/PowerShell/PowerShell/blob/master/README.md
https://blogs.msdn.microsoft.com/powershell/2018/01/10/powershell-core-6-0-generally-available-ga-and-supported/
https://blogs.msdn.microsoft.com/powershell/2018/01/10/powershell-core-6-0-generally-available-ga-and-supported/
https://blogs.msdn.microsoft.com/powershell/2018/01/10/powershell-core-6-0-generally-available-ga-and-supported/
https://spdx.org/licenses/MIT
http://www.jsnover.com/Docs/MonadManifesto.pdf
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?Fview=Dpowershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?Fview=Dpowershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where-object?Fview=Dpowershell-6
http://yevster.com

W o r k i n g
..........

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 27

Kubernetes is an open source platform
that offers deployment, main-

tenance, and scaling features. It simplifies management of
containerized Python applications while providing portability,
extensibility, and self-healing capabilities.

Whether your Python applications are simple or more
complex, Kubernetes lets you efficiently deploy and scale
them, seamlessly rolling out new features while limiting re-
sources to only those required.

In this article, I will describe the process of deploying a
simple Python application to Kubernetes, including:
• �Creating Python container images
• �Publishing the container images to an image registry
• �Working with persistent volume
• �Deploying the Python application to Kubernetes

Requirements
You will need Docker, kubectl, and this source code [1].

Docker is an open platform to build and ship distributed
applications. To install Docker, follow the official documenta-
tion [2]. To verify that Docker runs your system:

$ docker info

Containers: 0

Images: 289

Storage Driver: aufs

 Root Dir: /var/lib/docker/aufs

 Dirs: 289

Execution Driver: native-0.2

Kernel Version: 3.16.0-4-amd64

Operating System: Debian GNU/Linux 8 (jessie)

WARNING: No memory limit support

WARNING: No swap limit support

kubectl is a command-line interface for executing commands
against a Kubernetes cluster. Run the shell script below to
install kubectl:

cu�rl -LO https://storage.googleapis.com/kubernetes-release/

release/$(curl -s https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/linux/amd64/kubectl

Deploying to Kubernetes requires a containerized applica-
tion. Let’s review containerizing Python applications.

Running a Python
application on Kubernetes

 by Joannah Nanjekye

This step-by-step tutorial takes you through the process of
deploying a simple Python application on Kubernetes.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/jnanjekye/k8s_python_sample_code/tree/master
https://docs.docker.com/engine/installation/

W o r k i n g
.

28	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Publish the container images
We can publish our Python container image to different pri-
vate/public cloud repositories, like Docker Hub, AWS ECR,
Google Container Registry, etc. For this tutorial, we’ll use
Docker Hub.

Before publishing the image, we need to tag it to a version:

do�cker tag k8s_python_sample_code:latest k8s_python_sample_

code:0.1

Push the image to a cloud repository
Using a Docker registry other than Docker Hub to store im-
ages requires you to add that container registry to the local
Docker daemon and Kubernetes Docker daemons. You can
look up this information for the different cloud registries. We’ll
use Docker Hub in this example.

Execute this Docker command to push the image:

docker push k8s_python_sample_code

Working with CephFS persistent storage
Kubernetes supports many persistent storage provid-
ers, including AWS EBS, CephFS, GlusterFS, Azure Disk,
NFS, etc. I will cover Kubernetes persistence storage with
CephFS.

To use CephFS for persistent data to Kubernetes contain-
ers, we will create two files:

persistent-volume.yml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: app-disk1

 namespace: k8s_python_sample_code

spec:

 capacity:

 storage: 50Gi

 accessModes:

 - ReadWriteMany

 cephfs:

 monitors:

 - "172.17.0.1:6789"

 user: admin

 secretRef:

 name: ceph-secret

 readOnly: false

persistent_volume_claim.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: appclaim1

Containerization at a glance
Containerization involves enclosing an application in a con-
tainer with its own operating system. This full machine virtual-
ization option has the advantage of being able to run an appli-
cation on any machine without concerns about dependencies.

Roman Gaponov’s article [3] serves as a reference. Let’s
start by creating a container image for our Python code.

Create a Python container image
To create these images, we will use Docker, which enables
us to deploy applications inside isolated Linux software con-
tainers. Docker is able to automatically build images using
instructions from a Docker file.

This is a Docker file for our Python application:

FROM python:3.6

MAINTAINER XenonStack

Creating Application Source Code Directory

RUN mkdir -p /k8s_python_sample_code/src

Setting Home Directory for containers

WORKDIR /k8s_python_sample_code/src

Installing python dependencies

COPY requirements.txt /k8s_python_sample_code/src

RUN pip install --no-cache-dir -r requirements.txt

Copying src code to Container

COPY . /k8s_python_sample_code/src/app

Application Environment variables

ENV APP_ENV development

Exposing Ports

EXPOSE 5035

Setting Persistent data

VOLUME ["/app-data"]

Running Python Application

CMD ["python", "app.py"]

This Docker file contains instructions to run our sample Py-
thon code. It uses the Python 3.5 development environment.

Build a Python Docker image
We can now build the Docker image from these instructions
using this command:

docker build -t k8s_python_sample_code .

This command creates a Docker image for our Python
application.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://hackernoon.com/docker-tutorial-getting-started-with-python-redis-and-nginx-81a9d740d091

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 29

 metadata:

 labels:

 k8s-app: k8s_python_sample_code

 spec:

 containers:

 - name: k8s_python_sample_code

 image: k8s_python_sample_code:0.1

 imagePullPolicy: "IfNotPresent"

 ports:

 - containerPort: 5035

 volumeMounts:

 - mountPath: /app-data

 name: k8s_python_sample_code

 volumes:

 - name: <name of application>

 persistentVolumeClaim:

 claimName: appclaim1

Finally, use kubectl to deploy the application to Kubernetes:

$ �kubectl create -f k8s_python_sample_code.deployment.yml

$ kubectl create -f k8s_python_sample_code.service.yml

Your application was successfully deployed to Kubernetes.
You can verify whether your application is running by in-

specting the running services:

kubectl get services

May Kubernetes free you from future deployment hassles!

Want to learn more about Python? Nanjekye’s book, Py-
thon 2 and 3 Compatibility [4] offers clean ways to write code
that will run on both Python 2 and 3, including detailed exam-
ples of how to convert existing Python 2-compatible code to
code that will run reliably on both Python 2 and 3.

Links
[1]	� https://github.com/jnanjekye/k8s_python_sample_code/

tree/master
[2]	� https://docs.docker.com/engine/installation/
[3]	� https://hackernoon.com/docker-tutorial-getting-started-

with-python-redis-and-nginx-81a9d740d091
[4]	� https://www.apress.com/gp/book/9781484229545

Author
Straight outta 256, Joannah chooses results over reasons.
She is a passionate aviator. Show me the code!

 namespace: k8s_python_sample_code

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

We can now use kubectl to add the persistent volume and
claim to the Kubernetes cluster:

$ kubectl create -f persistent-volume.yml

$ kubectl create -f persistent-volume-claim.yml

We are now ready to deploy to Kubernetes.

Deploy the application to Kubernetes
To manage the last mile of deploying the application to Ku-
bernetes, we will create two important files: a service file and
a deployment file.

Create a file and name it k8s_python_sample_code.ser-
vice.yml with the following content:

apiVersion: v1

kind: Service

metadata:

 labels:

 k8s-app: k8s_python_sample_code

 name: k8s_python_sample_code

 namespace: k8s_python_sample_code

spec:

 type: NodePort

 ports:

 - port: 5035

 selector:

 k8s-app: k8s_python_sample_code

Create a file and name it k8s_python_sample_code.deploy-
ment.yml with the following content:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: k8s_python_sample_code

 namespace: k8s_python_sample_code

spec:

 replicas: 1

 template:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.apress.com/gp/book/9781484229545
https://github.com/jnanjekye/k8s_python_sample_code/tree/master
https://github.com/jnanjekye/k8s_python_sample_code/tree/master
https://docs.docker.com/engine/installation/
https://hackernoon.com/docker-tutorial-getting-started-with-python-redis-and-nginx-81a9d740d091
https://hackernoon.com/docker-tutorial-getting-started-with-python-redis-and-nginx-81a9d740d091
https://www.apress.com/gp/book/9781484229545

W o r k i n g
.

30	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

I don’t remember the first time
I heard about

blockchain. I do, however, remember when I began to
hear about it frequently. A couple of years ago, I was
working on building tools for community land rights [1],
when our partners and people at conferences began to
ask us about it. A colleague and I sat down and said,
“we need to figure out this blockchain thing,” because
we didn’t even know how it was relevant, let alone what
problems it might be able to fix. Before we started our
research, I used to describe blockchain as “the technol-
ogy that powers Bitcoin.” Although this is accurate, it’s
not very instructive because most people haven’t really
considered how Bitcoin works.

Blockchain basics
A blockchain is a distributed set of data that uses cryptogra-
phy to verify and secure that information. Each piece of data
in a blockchain is called a block, and the blockchain is the
entire set of that data.

Rather than having a central database server to store the
data, everyone involved in the blockchain has a copy of the
information. This enables each involved party to verify that

an individual block is accurate using hashing and cryptogra-
phy. Each block is created from a hash of some information.
Anyone who has that same information can create the same
hash to verify the block; however, they cannot go backward
from the hash to re-create the data the block is about. Each
person updating the blockchain uses a key that verifies that
they are who they say they are.

Public vs. private blockchains
We have said everyone has a copy of the blockchain, but
we haven’t talked about who is “everyone.” In a public block-
chain, it could literally be everyone, as anyone can partic-
ipate. Bitcoin and other cryptocurrencies are examples of
public blockchains. Anyone can obtain Bitcoin (although
whether they have enough knowledge or if it is practical is
another story). They can purchase Bitcoin through another
currency, sell something and get paid in Bitcoin, or mine
Bitcoin themselves.

Blockchain: Not just
for cryptocurrency

 by Kate Chapman

There’s a lot more to blockchain than Bitcoin.

A blockchain is a distributed set
of data that uses cryptography to
verify and secure that information.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/1/land-rights-documentation-Cadasta

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 31

Private blockchains define who can participate [2]. A
participant can either be approved by whoever set up the
blockchain or through a set of rules that define if someone
is approved. Private blockchains permit uses that might not
work in a public blockchain, such as a bank verifying some-
one’s identity [3].

Advanced blockchain applications
Advanced blockchain moves beyond simply recording and
verifying transactions. Ethereum [4] is an example of an ad-
vanced use case. Because code can be executed on the
Ethereum blockchain, it enables applications beyond those
of a simple blockchain. One such use case is smart con-
tracts [5]. Let’s say you want to buy an item from me, but we
don’t know each other. Instead of just trusting each other, we
could utilize blockchain technology to enable the transaction
by using the following steps:

1. �You put the agreed upon payment into an account.
2. �Code is executed verifying that the payment is there.
3. �I ship the item to you.
4. �You verify that the item arrived.
5. �Payment is released into my account.

All these steps could be turned into algorithms and run to
verify each step in the transaction. When individuals sell
something small, it’s uncommon to make up a traditional
contract, although they could. Much more complicated con-
tracts, such as buying a house or executing a will, could be
codified in the same way, using algorithms that verify the ex-
ecution of the contract.

Future blockchain applications
Blockchain shows a lot of promise, but it is not without warn-
ings. When many people participate in a blockchain, the
transaction costs can become quite high. Bitcoin is already
running into these issues [6]. Many non-cryptocurrency ap-
plications are being tested in promising pilots, but none has
yet reached scale.

One thesis discussed by Oxford Internet Institute pro-
fessor Vili Lehdonvirta is that blockchain will have its own
governance issues [7], and if governance issues are fixed,
blockchain might not be needed at all. He might have a
point, as many of the issues I saw in the land rights sec-
tor were attempts to skirt existing governance issues like
corruption. If those issues were fixed, there would be little
need for the technology.

Governance challenges are something many of us in
open source are all too familiar with. Unfortunately, there
are seldom easy solutions.

Links
[1]	� https://opensource.com/article/17/1/land-rights-

documentation-Cadasta
[2]	 �https://www.ibm.com/blogs/blockchain/2017/05/the-

difference-between-public-and-private-blockchain/
[3]	 �https://medium.com/blockchain-review/private-blockchain-

or-database-whats-the-difference-523e7d42edc
[4]	� https://www.ethereum.org/
[5]	� https://bitsonblocks.net/2016/02/01/a-gentle-introduction-

to-smart-contracts/
[6]	 �https://www.wired.com/story/bitcoin-global-warming/
[7]	� http://blogs.oii.ox.ac.uk/policy/the-blockchain-paradox-

why-distributed-ledger-technologies-may-do-little-to-
transform-the-economy/

Author
Kate Chapman has worked at the intersection of technol-
ogy and nonprofits for the last decade. Currently, she is a
principal at Cascadia Technical Mentorship, a consultancy
she started with Chris Daley. Kate specializes in formal-
izing communities into organizational structures, product
management, technical strategy, and building open com-
munities. Her mantra is “people before data.” Kate also
serves as the chairperson of the Board of Directors of the
OpenStreetMap Foundation and is a board member of the
Software Freedom Conservancy.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://medium.com/blockchain-review/private-blockchain-or-database-whats-the-difference-523e7d42edc
https://www.ethereum.org/
https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to-smart-contracts/
https://www.wired.com/story/bitcoin-global-warming/
http://blogs.oii.ox.ac.uk/policy/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
https://opensource.com/article/17/1/land-rights-documentation-Cadasta
https://opensource.com/article/17/1/land-rights-documentation-Cadasta
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://www.ibm.com/blogs/blockchain/2017/05/the-difference-between-public-and-private-blockchain/
https://medium.com/blockchain-review/private-blockchain-or-database-whats-the-difference-523e7d42edc
https://medium.com/blockchain-review/private-blockchain-or-database-whats-the-difference-523e7d42edc
https://www.ethereum.org/
https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to-smart-contracts/
https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to-smart-contracts/
https://www.wired.com/story/bitcoin-global-warming/
http://blogs.oii.ox.ac.uk/policy/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
http://blogs.oii.ox.ac.uk/policy/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
http://blogs.oii.ox.ac.uk/policy/the-blockchain-paradox-why-distributed-ledger-technologies-may-do-little-to-transform-the-economy/
https://cascadiatm.com
https://wiki.osmfoundation.org
https://sfconservancy.org/

32	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Simple compound commands—such as stringing sever-
al commands together in a sequence on the

command line—are used often. Such commands are sepa-
rated by semicolons, which define the end of a command. To
create a simple series of shell commands on a single line,
simply separate each command using a semicolon, like this:

command1 ; command2 ; command3 ; command4 ;

You don’t need to add a final semicolon because pressing
the Enter key implies the end of the final command, but it’s
fine to add it for consistency.

All the commands will run without a problem—as long as
no error occurs. But what happens if an error happens? We
can anticipate and allow for errors using the && and || control
operators built into Bash. These two control operators pro-
vide some flow control and enable us to alter the code-exe-
cution sequence. The semicolon and the newline character
are also considered to be Bash control operators.

The && operator simply says “if command1 is success-
ful, then run command2.” If command1 fails for any reason,
command2 won’t run. That syntax looks like:

command1 && command2

This works because
every command re-
turns a code to the
shell that indicates
whether it completed
successfully or failed
during execution. By con-
vention, a return code (RC)
of 0 (zero) indicates suc-
cess and any positive
number indicates some
type of failure. Some
sysadmin tools just
return a 1 to indi-
cate any failure,
but many use other positive
numerical codes to indicate the
type of failure.

The Bash shell’s $? variable can be checked very easily
by a script, by the next command in a list of commands, or
even directly by a sysadmin. Let’s look at RCs. We can run a
simple command and immediately check the RC, which will
always pertain to the last command that ran.

[student@studentvm1 ~]$ ll ; echo "RC = $?"

total 284

-rw-rw-r-- 1 student student 130 Sep 15 16:21 ascii-program.sh

drwxrwxr-x 2 student student 4096 Nov 10 11:09 bin

<snip>

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Videos

RC = 0

[student@studentvm1 ~]$

This RC is 0, which means the command completed suc-
cessfully. Now try the same command on a directory where
we don’t have permissions.

	 Best Couple

Coupled commands with
control operators in Bash by David Both

Add logic to the command line with control operators in
compound commands. Best

Couple
2018

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 33

R
ib

bo
n

Im
ag

e:
 G

ra
ph

ic
s

Pr
ov

id
ed

 b
y

ve
ct

ee
zy

.c
om

compounding and making a real mess of things. But let’s
make it a little more complicated.

The || control operator allows us to add another command
that executes when the initial program statement returns a
code larger than zero.

[s�tudent@studentvm1 ~]$ mkdir ~/testdir/testdir3 && touch

~/testdir/testdir3/testfile1 || echo "An error occurred while

creating the directory."

mk�dir: cannot create directory

'/home/student/testdir/testdir3': Permission denied

An error occurred while creating the directory.

[student@studentvm1 ~]$

Our compound command syntax using flow control takes this
general form when we use the && and || control operators:

pr�eceding commands ; command1 && command2 || command3 ;

following commands

The compound command using the control operators may
be preceded and followed by other commands that can be
related to the ones in the flow-control section but which are
unaffected by the flow control. All of those commands will
execute without regard to anything that takes place inside
the flow-control compound command.

These flow-control operators can make working at the
command line more efficient by handling decisions and let-
ting us know when a problem has occurred. I use them di-
rectly on the command line as well as in scripts.

You can clean up as the root user to delete the directory
and its contents.

[root@studentvm1 ~]# rm -rf /home/student/testdir

Links
[1]	� http://man7.org/linux/man-pages/man1/ls.1.html

Author
David Both is a Linux and Open Source advocate who
resides in Raleigh, North Carolina. He has been in the
IT industry for over forty years and taught OS/2 for IBM
where he worked for over 20 years. While at IBM, he
wrote the first training course for the original IBM PC
in 1981. He has taught RHCE classes for Red Hat and
has worked at MCI Worldcom, Cisco, and the State of
North Carolina. He has been working with Linux and
Open Source Software for almost 20 years. David has
written articles for OS/2 Magazine, Linux Magazine, Li-
nux Journal and OpenSource.com. His article “Complete
Kickstart,” co-authored with a colleague at Cisco, was
ranked 9th in the Linux Magazine Top Ten Best System
Administration Articles list for 2008.

[student@studentvm1 ~]$ ll /root ; echo "RC = $?"

ls: cannot open directory '/root': Permission denied

RC = 2

[student@studentvm1 ~]$

This RC’s meaning can be found in the ls command’s man
page [1].

Let’s try the && control operator as it might be used in a
command-line program. We’ll start with something simple:
Create a new directory and, if that is successful, create a
new file in it.

We need a directory where we can create other directo-
ries. First, create a temporary directory in your home directo-
ry where you can do some testing.

[student@studentvm1 ~]$ cd ; mkdir testdir

Create a new directory in ~/testdir, which should be empty
because you just created it, and then create a new, emp-
ty file in that new directory. The following command will do
those tasks.

[s�tudent@studentvm1 ~]$ mkdir ~/testdir/testdir2 && touch ~/

testdir/testdir2/testfile1

[student@studentvm1 ~]$ ll ~/testdir/testdir2/

total 0

-rw-rw-r-- 1 student student 0 Nov 12 14:13 testfile1

[student@studentvm1 ~]$

We know everything worked as it should because the test-
dir directory is accessible and writable. Change the permis-
sions on testdir so it is no longer accessible to the user
student as follows:

[student@studentvm1 ~]$ chmod 076 testdir ; ll | grep testdir

d---rwxrw-. 3 student student 4096 Nov 12 14:13 testdir

[student@studentvm1 ~]$

Using the grep command after the long list (ll) shows the
listing for testdir. You can see that the user student no
longer has access to the testdir directory. Now let’s run
almost the same command as before but change it to create
a different directory name inside testdir.

[s�tudent@studentvm1 ~]$ mkdir ~/testdir/testdir3 && touch ~/

testdir/testdir3/testfile1

mk�dir: cannot create directory '/home/student/testdir/

testdir3': Permission denied

[student@studentvm1 ~]$

Although we received an error message, using the && con-
trol operator prevents the touch command from running be-
cause there was an error in creating testdir3. This type of
command-line logical flow control can prevent errors from

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://man7.org/linux/man-pages/man1/ls.1.html
http://man7.org/linux/man-pages/man1/ls.1.html

C o l l a b o r a t i n g
.

34	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Every year in New York City, a few thousand
young men come to town, dress

up like Santa Claus, and do a pub crawl. One year during
this SantaCon event, I was walking on the sidewalk and
minding my own business, when I saw an extraordinary
scene. There was a man dressed up in a red hat and red
jacket, and he was talking to a homeless man who was sit-
ting in a wheelchair. The homeless man asked Santa Claus,
“Can you spare some change?” Santa dug into his pocket
and brought out a $5 bill. He hesitated, then gave it to the
homeless man. The homeless man put the bill in his pocket.

In an instant, something went wrong. Santa yelled at the
homeless man, “I gave you $5. I wanted to give you one dollar,
but five is the smallest I had, so you oughtta be grateful. This
is your lucky day, man. You should at least say thank you!”

This was a terrible scene to witness. First, the power differ-
ence was terrible: Santa was an able-bodied white man with
money and a home, and the other man was black, home-
less, and using a wheelchair.
It was also terrible because
Santa Claus was dressed
like the very symbol of gen-
erosity! And he was behaving
like Santa until, in an instant,
something went wrong and
he became cruel.

This is not merely a story
about Drunk Santa, however;
this is a story about technolo-
gy communities. We, too, try

to be generous when we answer new programmers’ ques-
tions, and every day our generosity turns to rage. Why?

My cruelty
I’m reminded of my own bad behavior in the past. I was
hanging out on my company’s Slack when a new colleague
asked a question.

New Colleague: Hey, does anyone know how to do such-
and-such with MongoDB?
Jesse: That’s going to be implemented in the next release.
New Colleague: What’s the ticket number for that feature?
Jesse: I memorize all ticket numbers. It’s #12345.
New Colleague: Are you sure? I can’t find ticket 12345.

He had missed my sarcasm, and his mistake embar-
rassed him in front of his peers. I laughed to myself, and
then I felt terrible. As one of the most senior program-

mers at MongoDB, I should
not have been setting this
example. And yet, such
behavior is commonplace
among programmers ev-
erywhere: We get sarcastic
with newcomers, and we
humiliate them.

Why does it matter?
Perhaps you are not here to
make friends; you are here

How to avoid humiliating
newcomers: A guide for
advanced developers

 by A. Jesse

To sustain an open source community’s growth, we need to welcome new
developers. Unfortunately, we are not always a welcoming bunch.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 35

to write code. If the code works, does it matter if we are nice
to each other or not?

A few months ago on the Stack Overflow blog, David
Robinson showed that Python has been growing dramat-
ically [1], and it is now the top language that people view
questions about on Stack Overflow. Even in the most pes-
simistic forecast, it will far outgrow the other languages
this year.

If you are a Python expert, then the line surging up and to the
right is good news for you. It does not represent competition,
but confirmation. As more new programmers learn Python,
our expertise becomes ever more valuable, and we will see
that reflected in our salaries, our job opportunities, and our
job security.

But there is a danger. There are soon to be more new Py-
thon programmers than ever before. To sustain this growth,
we must welcome them, and we are not always a welcoming
bunch.

The trouble with Stack Overflow
I searched Stack Overflow for rude answers to beginners’
questions, and they were not hard to find.

The message is plain: If you are asking a question this stu-
pid, you are doomed. Get out.

I immediately found another example of bad behavior:

Who has never been confused by Unicode in Python? Yet
the message is clear: You do not belong here. Get out.

Do you remember how it felt when you needed help and
someone insulted you? It feels terrible. And it decimates the
community. Some of our best experts leave every day be-
cause they see us treating each other this way. Maybe they
still program Python, but they are no longer participating in
conversations online. This cruelty drives away newcomers,
too, particularly members of groups underrepresented in
tech who might not be confident they belong. People who
could have become the great Python programmers of the
next generation, but if they ask a question and somebody is
cruel to them, they leave.

This is not in our interest. It hurts our community, and it
makes our skills less valuable because we drive people out.
So, why do we act against our own interests?

Why generosity turns to rage
There are a few scenarios that really push my buttons. One
is when I act generously but don’t get the acknowledgment I
expect. (I am not the only person with this resentment: This
is probably why Drunk Santa snapped when he gave a $5 bill
to a homeless man and did not receive any thanks.)

Another is when answering requires more effort than I ex-
pect. An example is when my colleague asked a question
on Slack and followed-up with, “What’s the ticket number?” I
had judged how long it would take to help him, and when he
asked for more help, I lost my temper.

These scenarios boil down to one problem: I have expec-
tations for how things are going to go, and when those ex-
pectations are violated, I get angry.

I’ve been studying Buddhism for years, so my understand-
ing of this topic is based in Buddhism. I like to think that
the Buddha discussed the problem of expectations in his
first tech talk when, in his mid-30s, he experienced a break-
through after years of meditation and convened a small con-
ference to discuss his findings. He had not rented a ven-
ue, so he sat under a tree. The attendees were a handful

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

C o l l a b o r a t i n g
.

36	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

of meditators the Buddha had met during his wanderings in
northern India. The Buddha explained that he had discov-
ered four truths:
• �First, that to be alive is to be dissatisfied—to want things to

be better than they are now.
• �Second, this dissatisfaction is caused by wants; specifi-

cally, by our expectation that if we acquire what we want
and eliminate what we do not want, it will make us happy
for a long time. This expectation is unrealistic: If I get a
promotion or if I delete 10 emails, it is temporarily satis-
fying, but it does not make me happy over the long-term.
We are dissatisfied because every material thing quickly
disappoints us.

• �The third truth is that we can be liberated from this dissat-
isfaction by accepting our lives as they are.

• �The fourth truth is that the way to transform ourselves
is to understand our minds and to live a generous and
ethical life.

I still get angry at people on the internet. It happened to
me recently, when someone posted a comment on a video
I published about Python co-routines [2]. It had taken me
months of research and preparation to create this video, and
then a newcomer commented, “I want to master python what
should I do.”

This infuriated me. My first impulse was to be sarcastic,
“For starters, maybe you could spell Python with a capital
P and end a question with a question mark.” Fortunately, I
recognized my anger before I acted on it, and closed the tab
instead. Sometimes liberation is just a Command+W away.

What to do about it
If you joined a community with the intent to be helpful but on
occasion find yourself flying into a rage, I have a method to
prevent this. For me, it is the step when I ask myself, “Am
I angry?” Knowing is most of the battle. Online, however,
we can lose track of our emotions. It is well-established that
one reason we are cruel on the internet is because, without
seeing or hearing the other person, our natural empathy is
not activated. But the other problem with the internet is that,

when we use computers, we lose awareness of our bodies.
I can be angry and type a sarcastic message without even
knowing I am angry. I do not feel my heart pound and my
neck grow tense. So, the most important step is to ask my-
self, “How do I feel?”

If I am too angry to answer, I can usually walk away. As
Thumper learned in Bambi [3], “If you can’t say something
nice, don’t say nothing at all.”

The reward
Helping a newcomer is its own reward, whether you receive
thanks or not. But it does not hurt to treat yourself to a glass
of whiskey or a chocolate, or just a sigh of satisfaction after
your good deed.

But besides our personal rewards, the payoff for the Python
community is immense. We keep the line surging up and to
the right. Python continues growing, and that makes our own
skills more valuable. We welcome new members, people who
might not be sure they belong with us, by reassuring them that
there is no such thing as a stupid question. We use Python
to create an inclusive and diverse community around writing
code. And besides, it simply feels good to be part of a commu-
nity where people treat each other with respect. It is the kind
of community that I want to be a member of.

The three-breath vow
There is one idea I hope you remember from this article: To
control our behavior online, we must occasionally pause and
notice our feelings. I invite you, if you so choose, to repeat
the following vow out loud:

I vow
to take three breaths
before I answer a question online.

This article is based on a talk, Why Generosity Turns To Rage,
and What To Do About It, that Jesse gave at PyTennessee
in February.

Links
[1]	 �https://stackoverflow.blog/2017/09/06/incredible-growth-

python/
[2]	� https://www.youtube.com/watch?v=7sCu4gEjH5I
[3]	� https://www.youtube.com/watch?v=nGt9jAkWie4

Author
A. Jesse is a staff engineer at MongoDB in New York City.
He wrote Motor, the async MongoDB Python driver, and is
the lead developer of the MongoDB C Driver. He contrib-
utes to PyMongo, asyncio, Python and Tornado. He studies
at the International Center for Photography and practices at
the Village Zendo.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.youtube.com/watch?v=7sCu4gEjH5I
https://www.youtube.com/watch?v=nGt9jAkWie4
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://www.youtube.com/watch?v=7sCu4gEjH5I
https://www.youtube.com/watch?v=nGt9jAkWie4

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 37

We are all obsessed with the numbers and
statistics we can measure in our

lives. We are concerned about our health, so we monitor our
weight, blood pressure, and calorie intake. We also observe
ourselves and our work en-
vironments to evaluate our
efficiency and team dynam-
ics. This mindset of focusing
on the numbers carries over
to how we evaluate open
source communities.

Why are metrics
important?
Open source communities,
like the human body, are
complex organizations with
commonalities as well as unique operational characteristics
and dynamics. By their nature, open source projects make a
lot of data available, not just related to the source code, but
also about contributors’ processes and actions. This infor-
mation gives us a better picture of a project’s ecosystem and
how it changes over time.

When evaluating community health and progress, com-
munities typically look at metrics on contributions, diversity,
and adoption of the artifacts they produce. Metrics can also
be very helpful to find bottlenecks and identify changes in the
balance of the ecosystem. Metrics can provide insights into
community health, growth, and overall dynamics—but only if
we use them wisely.

Why looking beyond the numbers is crucial
Although metrics are widely used and essential to under-
standing the community, being careful about how we use
the numbers is important. There are no magic “healthy”

numbers in open source
community metrics. In fact,
numbers can be misleading
unless you look further into
the details and context. You
could get an incomplete pic-
ture, for example, if you only
count code contributions
and overlook valuable docu-
mentation and tests in other
parts of repositories.

Finally, repeatedly collect-
ing and publishing the same

metrics can cause people to try to game the system, result-
ing in unhealthy community behavior. Judging a community’s

health purely on numbers could lead to false conclusions and
inappropriate follow-up actions, so how can we do better?

Community metrics:
The challenge behind
the numbers

 by Ildiko Vancsa

Although metrics are an important way to understand community
members’ effectiveness, they’re only one piece of the puzzle.

Metrics can provide insights into
community health, growth, and

overall dynamics—but only if we
use them wisely.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

C o l l a b o r a t i n g
.

38	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

How to use metrics better
Education is important to address these challenges. The
success of an open source project depends upon a group
of people who care about the topic and the technology
working to maintain the source code, tests, and documen-
tation. Metrics are important to get an overall picture of the
balance of the ecosystem, which is not driven by any single
metric, rather a combination of multiple key performance
indicators (KPIs).

When we look at metrics, like the number of code reviews,
we must always look beyond the number itself and under-
stand how we can use the data for growth and reflection on
whether we are moving in the right direction.

We need to ask key questions to identify which metrics we
should look into and how to combine them to gain meaning-
ful information. For example:
• �Why is a data point important for us (or our managers)?
• �What does it mean to have a higher or lower number?
• �And what do changes over time say?
Or to look back at an earlier example:
• �What does the ration of negative and positive reviews

mean?
Measuring only a single set of metrics and thinking only the
numbers matter is a bad idea. Instead, dig deeper and look
behind the numbers.

Author
Ildiko started her journey with virtualization during the univer-
sity years and has been in connection with this technology
different ways since then. She started her career at a small
research and development company in Budapest, where she
was focusing on areas like system management and business
process modelling and optimization. Ildiko got in touch with
OpenStack when she started to work in the cloud project at
Ericsson in 2013. She was a member of the Ceilometer and
Aodh core teams, now she drives NFV related feature devel-
opment activities in projects like Nova and Cinder. Beyond
code and documentation contributions she is also very pas-
sionate about on boarding and training activities, which is one
of her focus areas within the OpenStack Foundation.

Case study: Code reviews
Code reviews are highly encouraged in both corporate en-
vironments and open source projects to identify and fix
problems before they go live. Code reviewers learn the
most about the code and changes in the software, and
project maintainers rely on steady contributors’ opinions
before merging new changes. So how do metrics come
into the picture?

Measuring the number of positive and negative code re-
views over a specific period (e.g., a quarter of a year or per
release cycle) is easy. Many open source projects publish
these activity metrics with options to filter results on things
such as data about one contributor or all contributors work-
ing for the same company.

Although the tools used by open source projects are ac-
cessible by anyone (which means anyone can extract the
numbers), publishing these metrics on a dashboard may
lead to gaming them over time. For example, people may
try to have the most reviews, thinking it will speed up their
acceptance to the community, or companies may encourage
employees to generate higher numbers to improve their rep-
utation with customers.

The unfortunate consequence of trying to increase these
numbers quickly is that the quality of the code reviews drops.
One example is a negative review in which the reviewer just
repeats what the automated testing system pointed out.
Another is a reviewer simply saying he or she agrees with
previous reviewers, which adds nothing to the discussion.
Or even less helpful, the reviewer merely adds a “+1” mark
(which means the change looks good) on as many open
changes as possible with no meaningful comment.

There are multiple problems with these behaviors. These
meaningless reviews are disturbing for active contributors
trying to help code authors get the highest quality changes
merged. Not to mention that people who aren’t trying to help
maintain the project, rather trying only to boost their statistics
in the open dashboards, are annoying to regular contribu-
tors. Also, people who abuse the system like this are easy to
recognize, and often their reputation goes down once they
are identified.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 39

Becoming a programmer from an underrepre-
sented community like Cameroon

is tough. Many Africans don’t even know what computer
programming is—and a lot who do think it’s only for people
from Western or Asian countries.

I didn’t own a computer until I was 18, and I didn’t start pro-
gramming until I was a 19-year-old high school senior, and
had to write a lot of code on paper because I couldn’t be carry-
ing my big desktop to school. I have learned a lot over the past
five years as I’ve moved up the ladder to become a success-
ful programmer from an underrepresented community. While
these lessons are from my experience in Africa, many apply to
other underrepresented communities, including women.

1. Learn how to code
This is obvious: To be a successful programmer, you first
have to be a programmer. In an African community, this

may not be very easy. To learn how to code you need a
computer and probably internet, too, which aren’t very com-
mon for Africans to have. I didn’t own a desktop computer
until I was 18 years old—and I didn’t own a laptop until I
was about 20, and some may have still considered me priv-
ileged. Some students don’t even know what a computer
looks like until they get to the university.

You still have to find a way to learn how to code. Before I
had a computer, I used to walk for miles to see a friend who
had one. He wasn’t very interested in it, so I spent a lot of
time with it. I also visited cybercafes regularly, which con-
sumed most of my pocket money.

Take advantage of local programming communities, as
this could be one of your greatest sources of motivation.
When you’re working on your own, you may feel like a ninja,

but that may be because you do not interact much with other
programmers. Attend tech events. Make sure you have at
least one friend who is better than you. See that person as
a competitor and work hard to beat them, even though they
may be working as hard as you are. Even if you never win,
you’ll be growing in skill as a programmer.

6 �ways programmers
from underrepresented
countries can get ahead

 by Ivange Larry

It’s harder for programmers from less-privileged nations trying to achieve success
alongside people from countries with many material advantages.

Take advantage of local programming
communities, as this could be one of
your greatest sources of motivation.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

C o l l a b o r a t i n g
.

40	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

2. Don’t read too much into statistics
A lot of smart people in underrepresented communities nev-
er even make it to the “learning how to code” part because
they take statistics as hard facts. I remember when I was
aspiring to be a hacker, I used to get discouraged about the
statistic that there are far fewer black people than white peo-
ple in technology. If you google the “top 50 computer pro-
grammers of all time,” there probably won’t be many (if any)
black people on the list. Most of the inspiring names in tech,
like Ada Lovelace, Linus Torvalds, and Bill Gates, are white.

Growing up, I always believed technology was a white per-
son’s thing. I used to think I couldn’t do it. When I was young,
I never saw a science fiction movie with a black man as a
hacker or an expert in computing. It was always white peo-
ple. I remember when I got to high school and our teacher
wrote that programming was part of our curriculum, I thought
that was a joke—I wondered, “since when and how will that
even be possible?” I wasn’t far from the truth. Our teachers
couldn’t program at all.

Statistics also say that a lot of the amazing, inspiring pro-
grammers you look up to, no matter what their color, started
coding at the age of 13. But you didn’t even know program-
ming existed until you were 19. You ask yourself questions
like: How am I going to catch up? Do I even have the intel-
ligence for this? When I was 13, I was still playing stupid,
childish games—how can I compete with this?

This may make you conclude that white people are nat-
urally better at tech. That’s wrong. Yes, the statistics are
correct, but they’re just statistics. And they can change.
Make them change. Your environment contributes a lot to
the things you do while growing up. How can you compare
yourself to someone whose parents got him a computer

before he was nine—when you didn’t even see one until
you were 19? That’s a 10-year gap. And that nine-year-old
kid also had a lot of people to coach him.

You can be a great software engineer regardless of your
background. It may be a little harder because you may not
have the resources or opportunities people in the western
world have, but it’s not impossible.

3. Have a local hero or mentor
I think having someone in your life to look up to is one of
the most important things. We all admire people like Linus

Torvalds and Bill Gates but trying to make them your role
models can be demotivating. Bill Gates began coding at age
13 and formed his first venture at age 17. I’m 24 and still try-
ing to figure out what I want to do with my life. Those stories
always make me wonder why I’m not better yet, rather than
looking for reasons to get better.

Having a local hero or mentor is more helpful. Because
you’re both living in the same community, there’s a greater
chance there won’t be such a large gap to discourage you. A
local mentor probably started coding around the age you did
and was unlikely to start a big venture at a very young age.

I’ve always admired the big names in tech and still do.
But I never saw them as mentors. First, because their sto-
ries seemed like fantasy to me, and second, I couldn’t reach
them. I chose my mentors and role models to be those near
my reach. Choosing a role model doesn’t mean you just
want to get to where they are and stop. Success is step by
step, and you need a role model for each stage you’re trying
to reach. When you attain
a stage, get another role
model for the next stage.

You probably can’t get
one-on-one advice from
someone like Bill Gates.
You can get the advice
they’re giving to the public
at conferences, which is
great, too. I always follow
smart people. But advice
that makes the most impact is advice that is directed to
you. Advice that takes into consideration your goals and
circumstances. You can get that only from someone you
have direct access to.

I’m a product of many mentors at different stages of my
life. One is Nyah Check [1], who was a year ahead of me
at the university, but in terms of skill and experience, he
was two to three years ahead. I heard stories about him
when I was still in high school. He made people want to be
great programmers, not just focus on getting a 4.0 GPA.
He was one of the first people in French-speaking Africa
to participate in Google Summer of Code [2]. While still at
the university, he traveled abroad more times than many
lecturers would dream of—without spending a dime. He
could write code that even our course instructors couldn’t
understand. He co-founded Google Developer Group
Buea [3] and created an elite programmers club that
helped many students learn to code. He started a lot of
other communities, like the Docker Buea meetup [4] that
I’m the lead organizer for.

These things inspired me. I wanted to be like him and
knew what I would gain by becoming friends with him.
Discussions with him were always very inspiring—he
talked about programming and his adventures traveling
the world for conferences. I learned a lot from him, and

How can you compare yourself
to someone whose parents got
him a computer before he was

nine—when you didn’t even
see one until you were 19?

Success is step by
step, and you need

a role model for
each stage you’re

trying to reach.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/Ch3ck
https://summerofcode.withgoogle.com/
http://www.gdgbuea.net/
https://www.meetup.com/Docker-Buea/%3F_cookie-check%3DEnOn1Ct-CS4o1YOw

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 41

in front of a crowd to give a speech, but with practice, I’ve
gotten better.

6. Give back
Always find a way to give back. Mentor someone. Take up an
active role in a community. These are the ways I give back
to my community. It isn’t only a moral responsibility—it’s a
win-win because you can learn a lot while helping others get
closer to their dreams.

I was part of a Programming Language meetup organized
by Google Developer Group Buea where I mentored 15 stu-
dents in Java programming (from beginner to intermediate).
After the program was over, I created a Java User Group to
keep the Java community together. I recruited two members
from the meetup to join me as volunteer developers at Libre-
Health, and under my guidance, they made useful commits
to the project. They were later accepted as Google Summer
of Code students, and I was assigned to mentor them during
the program. I’m also the lead organizer for Docker Buea,
the official Docker meetup in Cameroon, and I’m also Docker
Campus Ambassador.

Taking up leadership roles in this community has forced
me to learn. As Docker Campus Ambassador, I’m supposed
to train students on how to use Docker. Because of this,
I’ve learned a lot of cool stuff about Docker and containers
in general.

Links
[1]	 �https://github.com/Ch3ck
[2]	 �https://summerofcode.withgoogle.com/
[3]	� http://www.gdgbuea.net/
[4]	� https://www.meetup.com/Docker-Buea/?_cookie-

check=EnOn1Ct-CS4o1YOw
[5]	� https://openmrs.org/
[6]	� https://librehealth.io/
[7]	� https://coala.io/#/home
[8]	� https://kubernetes.io/
[9]	� https://codein.withgoogle.com/archive/
[10]	 �https://www.outreachy.org/
[11]	� https://wiki.lfnetworking.org/display/LN/

LF+Networking+Internships

Author
A final-year computer engineering student, Larry has been
an open source enthusiast since 2015. In 2016, he was
accepted for a Google Summer of Code internship with
OpenMRS, continuing with LibreHealth in 2017. He has
contributed to a number of open source projects, including
OpenMRS, LibreHealth, Coala, and Kubernetes. Currently
a Google Summer of Code mentor with OpenMRS and Li-
breHealth, Larry serves in Docker Buea (the official Docker
meetup for Cameroon), lead and Docker ambassador at the
University of Buea, and founder and lead of the Buea Java
User Group (BueaJUG). He is also a GDG organizer.

I think he taught me well. Now younger students want
to be around me for the same reasons I wanted to learn
from him.

4. Get involved with open source
If you’re in Africa and want to gain top skills from top en-
gineers, your best bet is to join an open source project.
The tech ecosystem in Africa is small and mostly made of
startups, so getting experience in a field you love might
not be easy. It’s rare for startups in Africa to be working
with machine learning, distributed computing, or containers
and technologies like Kubernetes. Unless your passion is
web development, your best bet is joining an open source
project. I’ve learned most of what I know by being part of
the OpenMRS [5] community. I’ve also contributed to other
open source projects including LibreHealth [6], Coala [7],
and Kubernetes [8]. Along with gaining tech skills, you’ll
be building your network of influential people. Most of my
peers know about Linus Torvalds from books, but I have a
picture with him.

Participate in open source outreach programs like Goo-
gle Summer of Code, Google Code-in [9], Outreachy [10],
or Linux Foundation Networking Internships [11]. These op-
portunities help you gain skills that may not be available in
startups.

I participated in Google Summer of Code twice as a stu-
dent, and I’m now a mentor. I’ve been a Google Code-in org
admin, and I’m volunteering as an open source developer.
All these activities help me learn new things.

5. Take advantage of diversity programs while
you can
Diversity programs are great, but if you’re like me, you may
not like to benefit very much from them. If you’re on a team
of five and the basis of your offer is that you’re a black per-
son and the other four are white, you might wonder if you’re
really good enough. You won’t want people to think a foun-
dation sponsored your trip because you’re black rather than
because you add as much value as anyone else. It’s never
only that you’re a minority—it’s because the sponsoring or-
ganization thinks you’re an exceptional minority. You’re not
the only person who applied for the diversity scholarship,
and not everyone that applied won the award. Take advan-
tage of diversity opportunities while you can and build your
knowledge base and network.

When people ask me why the Linux Foundation spon-
sored my trip to the Open Source Summit, I say: “I was
invited to give a talk at their conference, but they have
diversity scholarships you can apply for.” How cool does
that sound?

Attend as many conferences as you can—diversity
scholarships can help. Learn all you can learn. Practice
what you learn. Get to know people. Apply to give talks.
Start small. My right leg used to shake whenever I stood

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/Ch3ck
https://summerofcode.withgoogle.com/
http://www.gdgbuea.net/
https://www.meetup.com/Docker-Buea/%3F_cookie-check%3DEnOn1Ct-CS4o1YOw
https://www.meetup.com/Docker-Buea/%3F_cookie-check%3DEnOn1Ct-CS4o1YOw
https://openmrs.org/
https://librehealth.io/
https://coala.io/#/home
https://kubernetes.io/
https://codein.withgoogle.com/archive/
https://www.outreachy.org/
https://wiki.lfnetworking.org/display/LN/LF%2BNetworking%2BInternships
https://wiki.lfnetworking.org/display/LN/LF%2BNetworking%2BInternships
https://openmrs.org/
https://librehealth.io/
https://coala.io/#/home
https://kubernetes.io/
https://codein.withgoogle.com/archive/
https://www.outreachy.org/
https://wiki.lfnetworking.org/display/LN/LF%2BNetworking%2BInternships

C o l l a b o r a t i n g
.

42	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Being a woman in tech is pretty damn
cool. For every head-

line about what Silicon Valley thinks of women [1], there
are tens of thousands of women building, innovating, and
managing technology teams around the world. Women are
helping build the future despite the hurdles they face, and
the community of women and allies growing to support
each other is stronger than
ever. From BetterAllies [2]
to organizations like Girls
Who Code [3] and communi-
ties like the one I met recently
at Red Hat Summit [4], there
are more efforts than ever
before to create an inclu-
sive community for women
in tech.

But the tech industry has
not always been this welcom-
ing, nor is the experience for
women always aligned with
the aspiration. And so we’re feeling the pain. Women in tech-
nology roles have dropped from its peak in 1991 at 36% to
25% today, according to a report by NCWIT [5]. Harvard Busi-
ness Review estimates [6] that more than half of the women
in tech will eventually leave due to hostile work conditions.
Meanwhile, Ernst & Young recently shared a study [7] and
found that merely 11% of high school girls are planning to
pursue STEM careers.

We have much work to do, lest we build a future that is
less inclusive than the one we live in today. We need ev-
eryone at the table, in the lab, at the conference, and in the
boardroom.

I’ve been interviewing both women and men for more
than a year now about their experiences in tech, all as part
of The Chasing Grace Project [8], a documentary series

about women in tech. The
purpose of the series is to
help recruit and retain fe-
male talent for the tech in-
dustry and to give women a
platform to be seen, heard,
and acknowledged for their
experiences. We believe
that compelling story can
begin to transform culture.

What Chasing Grace
taught me
What I’ve learned is that no

matter the dismal numbers, women want to keep building
and they collectively possess a resilience unmatched by
anything I’ve ever seen. And this is inspiring me. I’ve found
a power, a strength, and a beauty in every story I’ve heard
that is the result of resilience. I recently shared with the
attendees at the Red Hat Summit Women’s Leadership
Luncheon the top 10 principles of resilience I’ve heard from
throughout my interviews so far. I hope that by sharing

10 principles of resilience
for women in tech

 by Jennifer Cloer

We need everyone at the table, in the lab, at the conference and in the boardroom.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.newsweek.com/2015/02/06/what-silicon-valley-thinks-women-302821.html
https://opensource.com/article/17/6/male-allies-tech-industry-needs-you
https://twitter.com/GirlsWhoCode
http://opensource.com/tags/red-hat-summit
https://www.ncwit.org/sites/default/files/resources/womenintech_facts_fullreport_05132016.pdf
http://www.latimes.com/business/la-fi-women-tech-20150222-story.html
http://www.ey.com/us/en/newsroom/news-releases/ey-news-new-research-reveals-the-differences-between-boys-and-girls-career-and-college-plans-and-an-ongoing-need-to-engage-girls-in-stem
https://www.chasinggracefilm.com/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 43

them here the ideas and concepts can support and inspire
you, too.

1. Practice optimism
When taken too far, optimism can give you blind spots. But
a healthy dose of optimism allows you to see the best in
people and situations and that positive energy comes back
to you 100-fold. I haven’t met a woman yet as part of this
project who isn’t an optimist.

2. Build mental toughness
When I recently asked a 32-year-old tech CEO, who is
also a single mom of three young girls, what being a CEO
required she said mental toughness. It really summed

up what I’d heard in other
words from other women,
but it connected with me on
another level when she pro-
ceeded to tell me how caring
for her daughter—who was
born with a hole in heart—
prepared her for what she
would encounter as a tech

CEO. Being mentally tough to her means fighting for what
you love, persisting like a badass, and building your EQ
as well as your IQ.

3. Recognize your power
Most of the women I’ve interviewed don’t know their own
power and so they give it away unknowingly. Too many
women have told me that they willingly took on the house-
keeping roles on their teams—picking up coffee, donuts,
office supplies, and making the team dinner reservations.
Usually the only woman on their teams, this put them in a
position to be seen as less valuable than their male peers
who didn’t readily volunteer for such tasks. All of us, men
and women, have innate powers. Identify and know what
your powers are and understand how to use them for
good. You have so much more power than you realize.
Know it, recognize it, use it strategically, and don’t give it
away. It’s yours.

4. Know your strength
Not sure whether you can confront your boss about why
you haven’t been promoted? You can. You don’t know
your strength until you exercise it. Then, you’re unstoppa-
ble. Test your strength by pushing your fear aside and see
what happens.

5. Celebrate vulnerability
Every single successful women I’ve interviewed isn’t afraid
to be vulnerable. She finds her strength in acknowledging
where she is vulnerable and she looks to connect with oth-
ers in that same place. Exposing, sharing, and celebrating

each other’s vulnerabilities allows us to tap into something
far greater than simply asserting strength; it actually builds
strength—mental and emotional muscle. One women with
whom we’ve talked shared how starting her own tech com-
pany made her feel like she was letting her husband down.
She shared with us the details of that conversation with her
husband. Honest conversations that share our doubts and
our aspirations is what makes women uniquely suited to
lead in many cases. Allow yourself to be seen and heard. It’s
where we grow and learn.

6. Build community
Building community seems like a no-brainer in the world of
open source, right? But take a moment to think about how
many minorities in tech, es-
pecially those outside the col-
laborative open source com-
munity, don’t always feel like
part of the community. Many
women in tech, for example,
have told me they feel alone. Reach out and ask questions
or answer questions in community forums, at meetups,
and in IRC and Slack. When you see a woman alone at
an event, consider engaging with her and inviting her into
a conversation. Start a meetup group in your company
or community for women in tech. I’ve been so pleased
with the number of companies that host these groups. If it
doesn’t exists, build it.

7. Celebrate victories
One of my favorite Facebook groups is TechLadies [9] be-
cause of its recurring hashtag #YEPIDIDTHAT. It allows
women to share their victories in a supportive community. No
matter how big or small, don’t let a victory go unrecognized.
When you recognize your wins, you own them. They become
a part of you and you build on top of each one.

8. Be curious
Being curious in the tech community often means asking
questions: How does that work? What language is that
written in? How can I make this do that? When I’ve man-
aged teams over the years, my best employees have al-
ways been those who ask a lot of questions, those who
are genuinely curious about things. But in this context,
I mean be curious when your gut tells you something
doesn’t seem right. The energy in the meeting was off.
Did he/she just say what I think he said? Ask questions.
Investigate. Communicate openly and clearly. It’s the only
way change happens.

9. Harness courage
One women told me a story about a meeting in which the
women in the room kept being dismissed and talked over.
During the debrief roundtable portion of the meeting, she

I haven’t met a
woman yet as part
of this project who
isnít an optimist.

If it doesn’t exist,
build it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.facebook.com/therealTechLadies/

C o l l a b o r a t i n g
.

44	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

called it out and asked if others noticed it, too. Being a
20-year tech veteran, she’d witnessed and experienced
this many times but she had never summoned the cour-
age to speak up about it. She told me she was incredibly
nervous and was texting other women in the room to see
if they agreed it should be addressed. She didn’t want to
be a “troublemaker.” But this kind of courage results in
an increased understanding by everyone in that room and
can translate into other meetings, companies, and across
the industry.

10. Share your story
Share your experience with a friend, a group, a community,
or an industry. Be empowered by the experience of sharing
your experience. Stories change culture. When people con-

nect to a compelling
story, they begin to
change behaviors.
When people act,
companies and in-
dustries begin to
transform.

If you would like to support The Chasing Grace Project [8],
email Jennifer Cloer to learn more about how to get involved:
jennifer@wickedflicksproductions.com

Links
[1]	 �http://www.newsweek.com/2015/02/06/what-silicon-valley-

thinks-women-302821.html
[2]	� https://opensource.com/article/17/6/male-allies-tech-

industry-needs-you
[3]	 �https://twitter.com/GirlsWhoCode
[4]	� http://opensource.com/tags/red-hat-summit

[5]	� https://www.ncwit.org/sites/default/files/resources/
womenintech_facts_fullreport_05132016.pdf

[6]	� http://www.latimes.com/business/la-fi-women-tech-
20150222-story.html

[7]	 �http://www.ey.com/us/en/newsroom/news-releases/
ey-news-new-research-reveals-the-differences-between-
boys-and-girls-career-and-college-plans-and-an-ongoing-
need-to-engage-girls-in-stem

[8]	 �https://www.chasinggracefilm.com/
[9]	� https://www.facebook.com/therealTechLadies/

Author
Jennifer’s career has been dedicated to telling the stories
that have defined a generation of technology developers,
from Linux creator Linus Torvalds to the men and women
who started Creative Commons and Google’s first I/O Con-
ference. For more than 15 years, Jennifer has been a wom-
an in tech and has been recognized for her storytelling acu-
men by BusinessInsider, who ranked her among the best
PR people in tech for her video storytelling works. She is
the creator and executive producer of The Chasing Grace
Project (http://www.chasinggracefilm.com) and co-founder
of Wicked Flicks, a film/video production house working
with companies and individuals to affect change through
original content. She is also founder and lead consultant at
reTHINKit PR. She was most recently VP of communica-
tions at The Linux Foundation, where she oversaw brand
storytelling and team of PR, social media and video produc-
tion professionals. Prior to that, she was vice president at
Page One PR and held posts both in house and at agency
in communications. In addition to her BusinessInsider rec-
ognition, CIO.com identified her as one of the most influen-
tial women in open source.

When people connect to
a compelling story, they
begin to change behaviors.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.chasinggracefilm.com/
mailto:jennifer%40wickedflicksproductions.com?subject=
http://www.newsweek.com/2015/02/06/what-silicon-valley-thinks-women-302821.html
http://www.newsweek.com/2015/02/06/what-silicon-valley-thinks-women-302821.html
https://opensource.com/article/17/6/male-allies-tech-industry-needs-you
https://opensource.com/article/17/6/male-allies-tech-industry-needs-you
https://twitter.com/GirlsWhoCode
http://opensource.com/tags/red-hat-summit
https://www.ncwit.org/sites/default/files/resources/womenintech_facts_fullreport_05132016.pdf
https://www.ncwit.org/sites/default/files/resources/womenintech_facts_fullreport_05132016.pdf
http://www.latimes.com/business/la-fi-women-tech-20150222-story.html
http://www.latimes.com/business/la-fi-women-tech-20150222-story.html
http://www.ey.com/us/en/newsroom/news-releases/ey-news-new-research-reveals-the-differences-between-boys-and-girls-career-and-college-plans-and-an-ongoing-need-to-engage-girls-in-stem
http://www.ey.com/us/en/newsroom/news-releases/ey-news-new-research-reveals-the-differences-between-boys-and-girls-career-and-college-plans-and-an-ongoing-need-to-engage-girls-in-stem
http://www.ey.com/us/en/newsroom/news-releases/ey-news-new-research-reveals-the-differences-between-boys-and-girls-career-and-college-plans-and-an-ongoing-need-to-engage-girls-in-stem
http://www.ey.com/us/en/newsroom/news-releases/ey-news-new-research-reveals-the-differences-between-boys-and-girls-career-and-college-plans-and-an-ongoing-need-to-engage-girls-in-stem
https://www.chasinggracefilm.com/
https://www.facebook.com/therealTechLadies/
http://www.chasinggracefilm.com

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 45

In the free and open source software world,
there are few moments as excit-

ing or scary as submitting your first contribution to a project.
You’ve put your work out there and now it’s subject to review
and feedback by the rest of the community.

Not to put it too lightly, but
feedback is great. Without
feedback we keep making
the same mistakes. Without
feedback we can’t learn and
grow and evolve. It’s one
of the keys that makes free
and open source collabora-
tion work.

Unfortunately, most of us
have a hard time receiving
feedback, let alone accepting
it. We identify too closely with
our contribution, such that criticisms of it—no matter how
valid—are taken personally and put us on the defensive.

It doesn’t help that most of us also have a hard time giv-
ing feedback, often delivering criticisms without empathy
or in ways that are directed more at the person than at
their contribution.

Both receiving and giving feedback are skills that can be
learned and honed through practice. As you enter into this
world of free and open source contributions, I encourage you
to remember these tips:
1. �You are not your contribution. Even if the person pro-

viding the feedback is unskilled at it, and their criticisms

come across as personally directed, try not to take their
comments in that way. Try to focus on the aspects of their
feedback that relate directly to your contribution, then
guide the feedback conversation toward these elements.

2. �It’s not personal. Problems found with your contribution
are not problems found with
you. You’ve put a lot of time
and effort into that contribu-
tion, so naturally you feel a
bit attached to it and that’s
OK. It’s right to feel pride in
what you’ve created and ac-
complished. But it’s better to
recognize that there’s always
a way to improve your con-
tribution. Collaborate with
those providing feedback to
help evolve the contribution,

the project, your knowledge, and your skills.
3. �Feedback is a gift. When people provide feedback on

your contribution, they’re freely sharing their knowledge
and experience with you. You can use this feedback to
grow into a more skilled contributor, then one day pay that
gift forward as you provide feedback to others. This is part
of the beneficial cycle that allows free and open source
to grow.

4. �Feedback and questions help make you better at what
you do. That’s because feedback and questions help you
see things you never have before and expand your mind
and experiences in ways you never anticipated. None of

6 tips for receiving
feedback on your open
source contributions

 by VM (Vicky) Brasseur

Receiving feedback can be hard. These tips will help.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

C o l l a b o r a t i n g
.

46	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

us are perfect. None of us are all knowing. All of us have
been in your position before: feeling excited at the new-
ness but more than a little lost in it as well. It’s OK. Ask

questions. Ask for feedback. It’s the only way not to feel
lost, and we all want to help you.

5. �If you get angry at some feedback, step away for a
bit to cool off before responding. It happens: A piece
of feedback will get under your skin. Perhaps it was the
way it was phrased. Maybe it’s dismissing an implemen-
tation about which you have strong opinions. Or maybe
the person who gave the feedback is just an indelicate
chowderhead. Like I said: It happens. Just because you’re
angry does not mean you have to react immediately. Re-
plying in the heat of the moment rarely ends well for any-
one involved. Take time to cool off before responding. Go
for a walk. Play with your pets or your kids. Spend some
time on a hobby or other project. Fire up a good movie or
video game. Whatever it takes, give yourself space from
the offending comment. Once you’ve had the time to cool
off and think it over more, then you can respond rather
than react.

6. �Always Assume Good Intent. Above all, always assume
good intent with all feedback. No matter how poorly a piece
of feedback may be delivered, the person providing it is
still giving you that gift of their knowledge and experience.
They’re not (usually) doing it to show off; they want the best
for the project, for the contribution, and for you. Respect that
and them and help them help you provide the best contribu-
tion you can. They mean well. Do you?

These tips will help you keep the perspective needed to
get the most out of the feedback you’ll receive on your
first contribution. But what if you’re the one providing the
feedback? The next article [1] in this series has you cov-
ered there, too.

Adapted from Forge Your Future with Open Source [2] by
VM (Vicky) Brasseur, Copyright © 2018 The Pragmatic Program-
mers LLC. Reproduced with the permission of the publisher.

Links
[1]	� https://opensource.com/article/18/10/4-best-practices-

giving-open-source-code-feedback
[2]	 �http://www.pragprog.com/titles/vbopens

Author
VM (aka Vicky) spent most of her 20 years in the tech industry
leading software development departments and teams, and
providing technical management and leadership consulting
for small and medium businesses. Now she leverages nearly
30 years of free and open source software experience and
a strong business background to advise companies about
free/open source, technology, community, business, and the
intersections between them.

She is the author of Forge Your Future with Open Source,
the first book to detail how to contribute to free and open
source software projects. Think of it as the missing manual
of open source contributions and community participation.
The book is published by The Pragmatic Programmers and
is now available at https://fossforge.com.

Vicky is the Vice President of the Open Source Initiative,
a moderator and author for opensource.com, an author
for Linux Journal, and a frequent and popular speaker
at free/open source conferences and events. She’s the
proud winner of the Perl White Camel Award (2014) and
the O’Reilly Open Source Award (2016). She blogs about
free/open source, business, and technical management at
{anonymous => ‘hash’};

Collaborate with those providing
feedback to help evolve the

contribution, the project, your
knowledge, and your skills.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/10/4-best-practices-giving-open-source-code-feedback
http://www.pragprog.com/titles/vbopens
https://opensource.com/article/18/10/4-best-practices-giving-open-source-code-feedback
https://opensource.com/article/18/10/4-best-practices-giving-open-source-code-feedback
http://www.pragprog.com/titles/vbopens
https://vmbrasseur.com/services
https://vmbrasseur.com/services
https://vmbrasseur.com/services
https://fossforge.com
https://pragprog.com/
https://fossforge.com
https://opensource.org
https://opensource.com
http://linuxjournal.com
https://vmbrasseur.com/presentations
https://anonymoushash.vmbrasseur.com

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 47

In the previous article I gave you tips
for how to receive feed-

back [1], especially in the context of your first free and open
source project contribution. Now it’s time to talk about the
other side of that same coin: providing feedback.

If I tell you that something you did in your contribution
is “stupid” or “naive,” how would you feel? You’d proba-
bly be angry, hurt, or both, and rightfully so. These are
mean-spirited words that when directed at people, can cut
like knives. Words matter, and they matter a great deal.
Therefore, put as much thought into the words you use
when leaving feedback for a contribution as you do into
any other form of contribution you give to the project. As
you compose your feedback, think to yourself, “How would
I feel if someone said this
to me? Is there some way
someone might take this
another way, a less help-
ful way?” If the answer to
that last question has even
the chance of being a yes,
backtrack and rewrite your
feedback. It’s better to
spend a little time rewriting
now than to spend a lot of
time apologizing later.

When someone does make
a mistake that seems like it should have been obvious, re-
member that we all have different experiences and knowl-
edge. What’s obvious to you may not be to someone else.

And, if you recall, there once was a time when that thing was
not obvious to you. We all make mistakes. We all typo. We all
forget commas,
semicolons, and
closing brackets.
Save yourself a
lot of time and
effort: Point out
the mistake, but
leave out the judgement. Stick to the facts. After all, if the mis-
take is that obvious, then no critique will be necessary, right?
1. �Avoid ad hominem comments. Remember to review

only the contribution and not the person who contrib-
uted it. That is to say, point out, “the contribution could

be more efficient here in this
way…” rather than, “you did
this inefficiently.” The latter
is ad hominem feedback. Ad
hominem is a Latin phrase
meaning “to the person,”
which is where your feed-
back is being directed: to
the person who contributed
it rather than to the contri-
bution itself. By providing
feedback on the person you
make that feedback person-

al, and the contributor is justified in taking it personally.
Be careful when crafting your feedback to make sure
you’re addressing only the contents of the contribution

4 best practices for
giving open source
code feedback

 by VM (Vicky) Brasseur

A few simple guidelines can help you provide better feedback.

Point out the mistake, but
leave out the judgement.

Stick to the facts.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/10/6-tips-receiving-feedback

C o l l a b o r a t i n g
.

48	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

and not accidentally criticizing the person who submitted
it for review.

2. �Include positive comments. Not all of your feedback
has to (or should) be critical. As you review the con-
tribution and you see something that you like, provide
feedback on that as well. Several academic studies—
including an important one by Baumeister, Braslavsky,
Finkenauer, and Vohs [2]—show that humans focus
more on negative feedback than positive. When your
feedback is solely
negative, it can be
very disheartening
for contributors. In-
cluding positive rein-
forcement and feed-
back is motivating to
people and helps them feel good about their contribu-
tion and the time they spent on it, which all adds up to
them feeling more inclined to provide another contribu-
tion in the future. It doesn’t have to be some gushing
paragraph of flowery praise, but a quick, “Huh, that’s
a really smart way to handle that. It makes everything
flow really well,” can go a long way toward encouraging
someone to keep contributing.

3. �Questions are feedback, too. Praise is one less com-
mon but valuable type of review feedback. Questions
are another. If you’re looking at a contribution and can’t
tell why the submitter did things the way they did, or
if the contribution just doesn’t make a lot of sense to
you, asking for more information acts as feedback. It
tells the submitter that something they contributed isn’t
as clear as they thought and that it may need some
work to make the approach more obvious, or if it’s a
code contribution, a comment to explain what’s going
on and why. A simple, “I don’t understand this part here.
Could you please tell me what it’s doing and why you
chose that way?” can start a dialogue that leads to a
contribution that’s much easier for future contributors to
understand and maintain.

4. �Expect a negotiation. Using questions as a form of feed-
back implies that there will be answers to those questions,
or perhaps other questions in response. Whether your
feedback is in question or statement format, you should
expect to generate some sort of dialogue throughout the
process. An alternative is to see your feedback as incon-
trovertible, your word as law. Although this is definitely one
approach you can take, it’s rarely a good one. When pro-
viding feedback on a contribution, it’s best to collaborate
rather than dictate. As these dialogues arise, embracing

them as opportunities for conversation and learning on
both sides is important. Be willing to discuss their ap-
proach and your feedback, and to take the time to under-
stand their perspective.

The bottom line is: Don’t be a jerk. If you’re not sure wheth-
er the feedback you’re planning to leave makes you sound
like a jerk, pause to have someone else review it before
you click Send. Have empathy for the person at the receiv-
ing end of that feedback. While the maxim is thousands of

years old, it still rings true today that you
should try to do unto others as you would
have them do unto you. Put yourself in their
shoes and aim to be helpful and supportive
rather than simply being right.

Adapted from Forge Your Future with
Open Source [3] by VM (Vicky) Brasseur,

Copyright © 2018 The Pragmatic Programmers LLC. Repro-
duced with the permission of the publisher.

Links
[1]	� https://opensource.com/article/18/10/6-tips-receiving-

feedback
[2]	 �https://www.msudenver.edu/media/content/sri-taskforce/

documents/Baumeister-2001.pdf
[3]	� http://www.pragprog.com/titles/vbopens

Author
VM (aka Vicky) spent most of her 20 years in the tech industry
leading software development departments and teams, and
providing technical management and leadership consulting
for small and medium businesses. Now she leverages nearly
30 years of free and open source software experience and
a strong business background to advise companies about
free/open source, technology, community, business, and the
intersections between them.

She is the author of Forge Your Future with Open Source,
the first book to detail how to contribute to free and open
source software projects. Think of it as the missing manual
of open source contributions and community participation.
The book is published by The Pragmatic Programmers and
is now available at https://fossforge.com.

Vicky is the Vice President of the Open Source Initiative,
a moderator and author for opensource.com, an author
for Linux Journal, and a frequent and popular speaker
at free/open source conferences and events. She’s the
proud winner of the Perl White Camel Award (2014) and
the O’Reilly Open Source Award (2016). She blogs about
free/open source, business, and technical management at
{anonymous => ‘hash’};

When your feedback is solely
negative, it can be very

disheartening for contributors.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.msudenver.edu/media/content/sri-taskforce/documents/Baumeister-2001.pdf
http://www.pragprog.com/titles/vbopens
https://opensource.com/article/18/10/6-tips-receiving-feedback
https://opensource.com/article/18/10/6-tips-receiving-feedback
https://www.msudenver.edu/media/content/sri-taskforce/documents/Baumeister-2001.pdf
https://www.msudenver.edu/media/content/sri-taskforce/documents/Baumeister-2001.pdf
http://www.pragprog.com/titles/vbopens
https://vmbrasseur.com/services
https://vmbrasseur.com/services
https://vmbrasseur.com/services
https://fossforge.com
https://pragprog.com/
https://fossforge.com
https://opensource.org
https://opensource.com
http://linuxjournal.com
https://vmbrasseur.com/presentations
https://anonymoushash.vmbrasseur.com

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 49

You might be familiar with the expression: So
many tools, so little time. In order

to try to save you some time, I’ve outlined some of my fa-
vorite tools that help agile teams work better. If you are an
agilist, chances are you’re aware of similar tools, but I’m
specifically narrowing down the list to tools that appeal to
open source enthusiasts.

Caution! These tools are a little different than what
you may be expecting. There are no project management
apps—there is a great article [1] on that already—so
there are no checklists, no integrations with GitHub, just
simple ways to organize your thoughts and promote team
communication.

Building teams
In an industry where most people are used to giving and
receiving negative feedback, it’s rare to share positive feed-
back with coworkers. It’s not surprising—while some en-

joy giving compliments, many people struggle with telling
someone “way to go” or “couldn’t have done this without
you.” But it never hurts to tell someone they’re doing a good
job, and it often influences people to work better for the
team. Here are two tools that help you share kudos with
your coworkers.
• �Management 3.0 [2] has a treasure trove of free resourc-

es [3] for building teams. One tool we find compelling is
the concept of Feedback Wraps (and not just because it
inspires us to think about burritos). Feedback Wraps [4] is
a six-step process to come up with effective feedback for
anyone; you might think it is designed for negative feed-
back, but we find it’s perfect for sharing positive comments.

• �Happiness Packets [5] provides a way to share anony-
mous positive feedback with people in the open source
community. It is especially useful for those who aren’t
comfortable with such a personal interaction or don’t
know the people they want to reward. Happiness Pack-
ets offers a public archive [6] of comments (from people
who agree to share them), so you can look through and
get warm fuzzies and ideas on what to say to others if
you are struggling to find your own words. As a bonus, its
code of conduct process prevents anyone from sending
nasty messages.

Understanding why
Definitions are hard. In the agile world, keys to success in-
clude defining personas, the purpose of a feature, or the
product vision, and ensuring the entire agile team under-
stands why they are doing the work they are doing. We are

8 unusual FOSS tools
for agile teams

 by Marianne Feifer and Jen Krieger

In this list, there are no project management apps, no checklists, and no integrations with
GitHub. Just simple ways to organize your thoughts and promote team communication.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/business/16/3/top-project-management-tools-2016
https://management30.com/
https://management30.com/leadership-resource-hub/
https://management30.com/en/practice/feedback-wraps/
https://happinesspackets.io/
https://www.happinesspackets.io/archive/

C o l l a b o r a t i n g
.

50	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

a little disappointed by the limited number of open source
tools available that help product managers and owners do
their jobs.

One that we highly respect and use frequently to teach
teams at Red Hat is the Product Vision Board. It comes from
product management expert Roman Pichler, who offers nu-
merous tools and templates [7] to help teams develop a bet-
ter understanding of “the why.” (Note that you will need to
provide your email address to download these files.)
• �The Product Vision Board [8] template guides teams by

asking simple but effective questions to prompt them to
think about what they are doing before they think about
how they are going to do it.

• �We also like Roman’s Product Management Test [9]. This
is a simple and quick web form that guides teams through
the traditional role of a product manager and helps uncov-
er where there may be gaps. We recommend that product
management teams periodically complete this test to reas-
sess where they fall.

Visualizing work
Have you ever been working on a huge assignment, and
the steps to complete it are all jumbled up in your head,
out of order, and chaotic? Yeah, us, too. Mind mapping
is a technique that helps you visually organize all the
thoughts in your head. You don’t need to start out under-
standing how everything fits together—you just need your
brain, a whiteboard (or a mind-mapping tool), and some
time to think.
• �Our favorite open source tool in this space is Xmind3 [10].

It’s available for multiple platforms (Linux, MacOS, and
Windows), so you can easily share files back and forth
with other people. If you need to have the latest & greatest,
there is an updated version [11], which you can download
for free if you don’t mind sharing your email.

• �If you like more variety in your life, Eduard Lucena offers
three additional options [12] in Fedora Magazine. You can
find information about these tools’ availability in Fedora and
other distributions on their project pages.

• �Labyrinth [13]
• �View Your Mind [14]
• �FreeMind [15]
As we wrote at the start, there are many similar tools out
there.

Links
[1]	 �https://opensource.com/business/16/3/top-project-

management-tools-2016

[2]	 https://management30.com/�
[3]	� https://management30.com/leadership-resource-hub/
[4]	� https://management30.com/en/practice/feedback-wraps/
[5]	� https://happinesspackets.io/
[6]	� https://www.happinesspackets.io/archive/
[7]	� http://www.romanpichler.com/tools/
[8]	� http://www.romanpichler.com/tools/vision-board/
[9]	� http://www.romanpichler.com/tools/romans-product-

management-test/
[10]	� https://sourceforge.net/projects/

xmind3/?source=recommended
[11]	� http://www.xmind.net/
[12]	 �https://fedoramagazine.org/three-mind-mapping-tools-

fedora/
[13]	� https://people.gnome.org/~dscorgie/labyrinth.html
[14]	� http://www.insilmaril.de/vym/
[15]	� http://freemind.sourceforge.net/wiki/index.php/Main_Page

Author
Marianne Feifer has been part of agile teams for the past
15 years. Mostly using Scrum methodology, she par-
ticipated as a scrum team member as the original (and
only) technical writer for ManageIQ, www.manageiq.org.
In 2015, she became a Certified Scrum Master, and used
those skills with her team at Red Hat. She has adapted
those methods to work with a team of developers from a
variety of geographic locations. Most recently, she has
stepped into the Product Owner role as one of the leads in
an effort to sustain and manage customer satisfaction from
the engineering perspective.

Marianne prides herself in her ability to communicate ef-
fectively with all levels of software organizations across mul-
tiple disciplines, including engineering, sales, support, and
business units. She appreciates the challenge of connect-
ing people to keep the business moving and the developers
working.

Of all the Agile Principles, she values “people and relation-
ships over process” the most.

Jen Krieger is Chief Agile Architect at Red Hat. Most of her
20+ year career has been in software development repre-
senting many roles throughout the waterfall and agile lifecy-
cles. At Red Hat, she led a department-wide DevOps move-
ment focusing on CI/CD best practices. Most recently, she
worked with with the Project Atomic & OpenShift teams.
Now Jen is guiding teams across the company into agility
in a way that respects and supports Red Hat’s commitment
to Open Source.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.romanpichler.com/tools/
http://www.romanpichler.com/tools/vision-board/
http://www.romanpichler.com/tools/romans-product-management-test/
https://sourceforge.net/projects/xmind3/?source=recommended
http://www.xmind.net/
https://fedoramagazine.org/three-mind-mapping-tools-fedora/
https://people.gnome.org/~dscorgie/labyrinth.html
http://www.insilmaril.de/vym/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
https://opensource.com/business/16/3/top-project-management-tools-2016
https://opensource.com/business/16/3/top-project-management-tools-2016
https://management30.com/
https://management30.com/leadership-resource-hub/
https://management30.com/en/practice/feedback-wraps/
https://happinesspackets.io/
https://www.happinesspackets.io/archive/
http://www.romanpichler.com/tools/
http://www.romanpichler.com/tools/vision-board/
http://www.romanpichler.com/tools/romans-product-management-test/
http://www.romanpichler.com/tools/romans-product-management-test/
https://sourceforge.net/projects/xmind3/?source=recommended
https://sourceforge.net/projects/xmind3/?source=recommended
http://www.xmind.net/
https://fedoramagazine.org/three-mind-mapping-tools-fedora/
https://fedoramagazine.org/three-mind-mapping-tools-fedora/
https://people.gnome.org/~dscorgie/labyrinth.html
http://www.insilmaril.de/vym/
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://www.manageiq.org

.......... C o l l a b o r a t i n g

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 51

 In 2018, Guido van Rossum [1], creator of the Python [2]
programming language and Benevolent

Dictator For Life [3] (BDFL) of the project, announced his
intention to step away.

Below is a portion of his message, although the entire
email [4] is not terribly long and worth taking the time to read
if you’re interested in the circumstances leading to van Ros-
sum’s departure.

I would like to remove myself entirely from the deci-
sion process. I’ll still be there for a while as an ordinary
core dev, and I’ll still be available to mentor people—
possibly more available. But I’m basically giving myself
a permanent vacation from being BDFL, and you all
will be on your own.

After all that’s eventually going to happen regard-
less—there’s still that bus lurking around the corner,
and I’m not getting younger... (I’ll spare you the list of
medical issues.)

I am not going to appoint a successor.
So what are you all going to do? Create a democracy?

Anarchy? A dictatorship? A federation?

It’s worth zooming out for a moment to consider the issue at
a larger scale. How an open source project is governed can
have very real consequences on the long-term sustainability
of its user and developer communities alike.

BDFLs tend to emerge from passion projects, where a
single individual takes on a project before growing a com-
munity around it. Projects emerging from companies or oth-
er large organization often lack this role, as the distribution
of authority is more formalized, or at least more dispersed,
from the start. Even then, it’s not uncommon to need to
figure out how to transition from one form of project gov-
ernance to another as the community grows and expands.

But regardless of how an open source project is structured,
ultimately, there needs to be some mechanism for deciding
how to make technical decisions. Someone, or some group,
has to decide which commits to accept, which to reject, and
more broadly what direction the project is going to take from
a technical perspective.

Surely the Python project will be okay without van Ros-
sum. The Python Software Foundation [5] has plenty of for-
malized structure in place bringing in broad representation
from across the community. There’s even been a humorous
April Fools Python Enhancement Proposal [6] (PEP) ad-
dressing the BDFL’s retirement in the past.

That said, it’s interesting that van Rossum did not heed
the fifth lesson of Eric S. Raymond from his essay, The Mail
Must Get Through [7] (part of The Cathedral & the Bazaar [8]),
which stipulates: “When you lose interest in a program, your
last duty to it is to hand it off to a competent successor.” One
could certainly argue that letting the community pick its own
leadership, though, is an equally valid choice.

What do you think? Are projects better or worse for being
run by a BDFL? What can we expect when a BDFL moves
on? And can someone truly step away from their passion proj-
ect after decades of leading it? Will we still turn to them for
the hard decisions, or can a community smoothly transition to
new leadership without the pitfalls of forks or lost participants?

Can you truly stop being a BDFL? Or is it a title you’ll hold,
at least informally, until your death?

Links
[1]	� https://en.wikipedia.org/wiki/Guido_van_Rossum
[2]	 �https://opensource.com/resources/python
[3]	� https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
[4]	 �https://www.mail-archive.com/python-committers@python.

org/msg05628.html
[5]	 https://www.python.org/psf-landing/�
[6]	� https://www.python.org/dev/peps/pep-0401/
[7]	� http://www.catb.org/esr/writings/homesteading/cathedral-

bazaar/ar01s02.html
[8]	� https://opensource.com/life/16/5/19-years-later-cathedral-

and-bazaar-still-moves-us

Author
Jason uses technology to make the world more open.†He
is a Linux desktop enthusiast, map/geospatial nerd, Rasp-
berry Pi tinkerer, Data analysis and visualization geek,
occasional coder, cloud nativist, and civic tech and open
government booster.

Is BDFL a death sentence?
 by Jason Baker

What happens when a Benevolent Dictator For Life moves on from an open source project?

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://opensource.com/resources/python
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://www.mail-archive.com/python-committers%40python.org/msg05628.html
https://www.python.org/psf-landing/
https://www.python.org/dev/peps/pep-0401/
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar/ar01s02.html
https://opensource.com/life/16/5/19-years-later-cathedral-and-bazaar-still-moves-us
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://opensource.com/resources/python
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://www.mail-archive.com/python-committers%40python.org/msg05628.html
https://www.mail-archive.com/python-committers%40python.org/msg05628.html
https://www.python.org/psf-landing/
https://www.python.org/dev/peps/pep-0401/
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar/ar01s02.html
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar/ar01s02.html
https://opensource.com/life/16/5/19-years-later-cathedral-and-bazaar-still-moves-us
https://opensource.com/life/16/5/19-years-later-cathedral-and-bazaar-still-moves-us

L e a r n i n g
.

52	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

“Hello world” is the beginning of every-
thing when it comes to

computing and programming. It’s the first thing you learn in a
new programming language, and it’s the way you test some-
thing out or check to see if something’s working because it’s
usually the simplest way of testing simple functionality.

Warriors of programming language wars often cite their
own language’s “hello world” against that of another, saying
theirs is shorter or more concise or more explicit or some-
thing. Having a nice simple readable “hello world” program
makes for a good intro for beginners learning your language,
library, framework, or tool.

I thought it would be cool to create a list of as many differ-
ent “hello world” programs as possible that can be run on the
Raspberry Pi [1] using its Raspbian operating system, but
without installing any additional software than what comes
bundled when you download it from the Raspberry Pi web-
site. I’ve created a GitHub repository [2] of these programs,
and I’ve explained 10 of them for you here.

1. Scratch
Scratch [3] is a graphical block-based programming environ-
ment designed for kids to learn programming skills without
having to type or learn the synax of a programming language.
The “hello world” for Scratch is simple—and very visual!
1. �Open Scratch 2 from the main menu.
2. �Click Looks.
3. �Drag a say Hello! block into the workspace on the right.

4. �Change the text to Hello world.

5. �Click on the block to run the code.

2. Python
Python [4] is a powerful and professional language that’s
also great for beginners—and it’s lots of fun to learn. Be-
cause one of Python’s main objectives was to be readable
and stick to simple English, its “hello world” program is as
simple as possible.
1. �Open Thonny Python IDE from the main menu.
2. �Enter the following code:

 print("Hello world")

3. �Save the file as hello3.py.
4. �Click the Run button.

3. Ruby/Sonic Pi
Ruby [5] is another powerful language that’s friendly for be-
ginners. Sonic Pi [6], the live coding music synth, is built on
top of Ruby, so what users actually type is a form of Ruby.

10 Hello World programs
for your Raspberry Pi

 by Ben Nuttall

“Hello world” is the beginning of everything when it comes to computing and programming.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/raspberry-pi
https://github.com/bennuttall/hello-world-raspberry-pi
https://opensource.com/sitewide-search?search_api_views_fulltext=scratch
https://opensource.com/tags/python
https://opensource.com/sitewide-search?search_api_views_fulltext=ruby
http://sonic-pi.net/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 53

5. Press Enter to run.

You can also install NodeJS on the Raspberry Pi, and write
server-side JavaScript, but that’s not available in the stan-
dard Raspbian image.

5. Bash
Bash [10] (Bourne Again Shell) is the default Unix shell com-
mand language in most Linux distributions, including Rasp-
bian. You can enter Bash commands directly into a terminal
window, or script them into a file and execute the file like a
programming script.
1. Open Text Editor from the main menu.
2. Enter the following code:

 echo "Hello world"

3. Save the file as hello.sh in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

 bash hello.sh

Note you’d usually see a “hashbang” at the top of the script
(#!/bin/bash), but because I’m calling this script directly us-
ing the bash command, it’s not necessary (and I’m trying to
keep all these examples as short as possible).

You’d also usually make the file executable with chmod +x,
but again, this is not necessary as I’m executing with bash.

6. Java
Java [11] is a popular language in industry, and is common-
ly taught to undergraduates studying computer science. I
learned it at university and have tried to avoid touching it
since then. Apparently, now I do (very small amounts of) it
for fun...
1. Open Text Editor from the main menu.
2. Enter the following code:

 public class Hello {

 public static void main(String[] args) {

 System.out.println("Hello world");

 }

 }

1. Open Sonic Pi from the main menu.
2. Enter the following code:

 puts "Hello world"

3. Press Run.

Unfortunately, “hello world” does not do Sonic Pi justice in
the slightest, but after you’ve finished this article you should
check out its creator Sam Aaron live coding [7], and see the
tutorials on the Sonic Pi website [8].

Alternatively, to using the Sonic Pi application for this ex-
ample, you can write Ruby code in a text editor and run it in
the terminal:
1. Open Text Editor from the main menu.
2. Enter the following code:

 puts "Hello world"

3. Save the file as hello.rb in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

 ruby hello.rb

4. JavaScript
This is a bit of a cheat as I just make use of client-side Ja-
vaScript [9] within the web browser using the Web Inspector
console, but it still counts!
1. Open Chromium Web Browser from the main menu.
2. Right-click the empty web page and select Inspect from
the context menu.
3. Click the Console tab.
4. Enter the following code:

 console.log("Hello world")

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/sitewide-search?search_api_views_fulltext=bash
https://opensource.com/tags/java
https://www.youtube.com/watch?v=KJPdbp1An2s
http://sonic-pi.net/
https://opensource.com/tags/javascript

L e a r n i n g
.

54	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

3. Save the file as Hello.java in the home directory.
4. Open Terminal from the main menu.
5. Run the following commands:

 javac Hello.java

 java Hello

I could almost remember the “hello world” for Java off the
top of my head, but not quite. I always forget where the
String[] args bit goes, but it’s obvious when you think
about it...

7. C
C is a fundamental low-level programming language. It’s
what many programming languages are written in. It’s what
operating systems are written in. See for yourself—take a
look at the source for Python [12] and the Linux kernel [13].
If that looks a bit hazy, get started with “hello world”:
1. Open Text Editor from the main menu.
2. Enter the following code:

 #include <stdio.h>

 int main() {

 printf("Hello world\n");

 }

3. Save the file as hello.c in the home directory.
4. Open Terminal from the main menu.
5. Run the following commands:

 gcc -o hello hello.c

 ./hello

Note that in the previous examples, only one command was
required to run the code (e.g., python3 hello.py or ruby
hello.rb) because these languages are interpreted rather
than compiled. (Actually Python is compiled at runtime but
that’s a minor detail.) C code is compiled into byte code and
the byte code is executed.

If you’re interested in learning C, the Raspberry Pi Foun-
dation publishes a book Learning to code with C [14] written
by one of its engineers. You can buy it in print or download
for free.

8. C++
C’s younger bother, C++ (that’s C incremented by one...) is
another fundamental low-level language, with more advanced
language features included, such as classes. It’s popular in a
range of uses, including game development, and chunks of
your operating system will be written in C++ too.
1. Open Text Editor from the main menu.
2. Enter the following code:

 #include <iostream>

 using namespace std;

 int main() {

 cout << "Hello world\n";

 }

3. Save the file as hello.cpp in the home directory.
4. Open Terminal from the main menu.
5. Run the following commands:

 g++ -o hellopp hello.cpp

 ./hellocpp

Readers familiar with C/C++ will notice I have not included the
main function return values in my examples. This is intentional
as to remove boilerplate, which is not strictly necessary.

9. Perl
Perl [15] gets a lot of stick for being hard to read, but nothing
much gets in the way of understanding its “hello world” pro-
gram. So far, so good!
1. Open Text Editor from the main menu.
2. Enter the following code:

 print "Hello world\n"

3. Save the file as hello.pl in the home directory.
4. Open Terminal from the main menu.
5. Run the following command:

 perl hello.pl

Again, I learned Perl at university, but unlike Java, I have
managed to successfully avoid using it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/python/cpython/
https://github.com/torvalds/linux
https://www.raspberrypi.org/magpi/issues/essentials-c-v1/
https://opensource.com/tags/perl

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 55

10. Python extras: Minecraft and the Sense HAT emulator
So that’s nine different programming languages covered,
but let’s finish with a bit more Python. The popular comput-
er game Minecraft is available for Raspberry Pi, and comes
bundled with Raspbian. A Python library allows you to com-
municate with your Minecraft world, so open Minecraft and a
Python editor side-by-side for some fun hacking your virtual
world with code.
1. Open Minecraft Pi [16] from the main menu.
2. Create and enter a Minecraft world.
3. Press Tab to release your focus from the Minecraft window.
4. Open Thonny Python IDE from the main menu.
5. Enter the following code:

 from mcpi.minecraft import Minecraft

 mc = Minecraft.create()

 mc.postToChat("Hello world")

6. Save the file as hellomc.py.
7. Click the Run button.

Read more about hacking Minecraft with Python in my article
Getting started with Minecraft Pi [16].

Finally, let’s look at the Sense HAT Emulator [17]. This tool
provides a graphical representation of the Sense HAT [18],
an add-on board for Raspberry Pi made especially to go to
space for reasons explained in this article [19].

The sense_emu Python library is identical to the sense_
hat library except that its commands get executed in the em-
ulator rather than on a physical piece of hardware. Because
the Sense HAT includes an 8x8 LED display, we can use its
show_message function to write “hello world”.
1. Open another tab in Thonny and enter the following code:

 from sense_emu import SenseHat

 sense = SenseHat()

 sense.show_message("Hello world")

2. Save the file as sense.py.

3. Click the Run button.

More
That’s it! I hope you learned something new, and have fun
trying out new “hello world” programs on your Raspberry Pi!

You can find more on the GitHub repository [20] —and feel
free to suggest more in an issue, or send me a pull request
with your contribution.

Links
[1]	� https://opensource.com/resources/raspberry-pi
[2]	 �https://github.com/bennuttall/hello-world-raspberry-pi
[3]	 �https://opensource.com/sitewide-search?search_api_

views_fulltext=scratch
[4]	 �https://opensource.com/tags/python
[5]	� https://opensource.com/sitewide-search?search_api_

views_fulltext=ruby
[6]	 �http://sonic-pi.net/
[7]	� https://www.youtube.com/watch?v=KJPdbp1An2s
[8]	 �http://sonic-pi.net/
[9]	� https://opensource.com/tags/javascript
[10]	� https://opensource.com/sitewide-search?search_api_

views_fulltext=bash
[11]	� https://opensource.com/tags/java
[12]	 �https://github.com/python/cpython/
[13]	� https://github.com/torvalds/linux
[14]	� https://www.raspberrypi.org/magpi/issues/essentials-c-v1/
[15]	� https://opensource.com/tags/perl
[16]	� https://opensource.com/life/15/5/getting-started-minecraft-pi
[17]	 �https://opensource.com/life/16/9/coding-raspberry-pi-web-

emulator
[18]	� https://opensource.com/life/15/10/exploring-raspberry-pi-

sense-hat
[19]	� https://opensource.com/education/15/4/uk-students-

compete-chance-have-their-raspberry-pi-code-run-space
[20]	 �https://github.com/bennuttall/hello-world-raspberry-pi

Author
Ben Nuttall is the Raspberry Pi Community Manager. In ad-
dition to his work for the Raspberry Pi Foundation, he’s into
free software, maths, kayaking, GitHub, Adventure Time,
and Futurama. Follow Ben on Twitter @ben_nuttall.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/life/15/5/getting-started-minecraft-pi
https://opensource.com/life/15/5/getting-started-minecraft-pi
https://opensource.com/life/16/9/coding-raspberry-pi-web-emulator
https://opensource.com/life/15/10/exploring-raspberry-pi-sense-hat
https://opensource.com/education/15/4/uk-students-compete-chance-have-their-raspberry-pi-code-run-space
https://github.com/bennuttall/hello-world-raspberry-pi
https://opensource.com/resources/raspberry-pi
https://github.com/bennuttall/hello-world-raspberry-pi
https://opensource.com/sitewide-search?search_api_views_fulltext=scratch
https://opensource.com/sitewide-search?search_api_views_fulltext=scratch
https://opensource.com/tags/python
https://opensource.com/sitewide-search?search_api_views_fulltext=ruby
https://opensource.com/sitewide-search?search_api_views_fulltext=ruby
http://sonic-pi.net/
https://www.youtube.com/watch?v=KJPdbp1An2s
http://sonic-pi.net/
https://opensource.com/tags/javascript
https://opensource.com/sitewide-search?search_api_views_fulltext=bash
https://opensource.com/sitewide-search?search_api_views_fulltext=bash
https://opensource.com/tags/java
https://github.com/python/cpython/
https://github.com/torvalds/linux
https://www.raspberrypi.org/magpi/issues/essentials-c-v1/
https://opensource.com/tags/perl
https://opensource.com/life/15/5/getting-started-minecraft-pi
https://opensource.com/life/16/9/coding-raspberry-pi-web-emulator
https://opensource.com/life/16/9/coding-raspberry-pi-web-emulator
https://opensource.com/life/15/10/exploring-raspberry-pi-sense-hat
https://opensource.com/life/15/10/exploring-raspberry-pi-sense-hat
https://opensource.com/education/15/4/uk-students-compete-chance-have-their-raspberry-pi-code-run-space
https://opensource.com/education/15/4/uk-students-compete-chance-have-their-raspberry-pi-code-run-space
https://github.com/bennuttall/hello-world-raspberry-pi
http://www.twitter.com/ben_nuttall

L e a r n i n g
.

56	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

I’ve both asked and been asked about
the best way to learn

more about artificial intelligence (AI). What should I read?
What should I watch? I’ll get to that. But, first, it’s useful
to break down this question, given that AI covers a lot of
territory.

One important distinction to draw is between the research
side of AI and the applied side. Cassie Kozyrkov of Goo-
gle drew this distinction [1] in
a talk at the recent O’Reilly
Artificial Intelligence Confer-
ence in London, and it’s a
good one.

Research AI is rather ac-
ademic in nature and re-
quires a heavy dose of math
across a variety of disci-
plines before you even get
to those parts that are spe-
cific to AI. This aspect of AI
focuses on the algorithms
and tools that drive the state of AI forward. For example,
what neural network structures might improve vision rec-
ognition results? How might we make unsupervised learn-
ing a more generally useful approach? Can we find ways
to understand better how deep learning pipelines come up
with the answers they do?

Applied AI, on the other hand, is more about using exist-
ing tools to obtain useful results. Open source has played
a big role here in providing free and often easy-to-use

software in a variety of languages. Public cloud providers
have also devoted a lot of attention to providing machine
learning services, models, and datasets that make the on-
ramp to getting started with AI much simpler than it would
be otherwise.

I’ll add at this point that applied AI practitioners shouldn’t
treat their tools as some sort of black box that spits out
answers for mysterious reasons. At a minimum, they need

to understand the limits and
potential biases of different
techniques, models, and
data collection approach-
es. It’s just that they don’t
necessarily need to delve
deeply into all the theory
underpinning every part of
their toolchain.

Although it’s probably less
important for working in AI
on a day-to-day basis, it’s
also useful to understand

the broader context of AI. It goes beyond the narrow scope
of deep learning on neural networks that have been so im-
portant to the gains made in reinforcement learning and su-
pervised learning to date. For example, AI is often viewed as
a way to augment (rather than replace) human judgment and
decisions. But the handoff between machine and human has
its own pitfalls.

With that background, here are some study areas and
resources you may find useful.

How to get started in AI
 by Gordon Haff

Before you can begin working in artificial intelligence, you need to acquire some human intelligence.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.youtube.com/watch?v=RLtI7r3QUyY

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 57

programming background, MIT’s Introduction to Computer
Science and Programming Using Python [13], based on its
on-campus 6.001 course, is a good primer. If you’re truly
new to programming, Charles Severance’s Programming for
Everybody (Getting Started with Python) [14] from the Uni-
versity of Michigan doesn’t toss you into the deep end of the
pool the way the MIT course does.

The R programming language [15] is also a useful skill to
add to your toolbox. While it’s less used in machine learning
(ML) per se, it’s common for a variety of other data science
tasks, and applied AI/ML and data science often blend in
practice. For example, many tasks associated with orga-
nizing and cleaning data apply equally whatever analysis
techniques you’ll eventually use. A MOOC sequence like
Harvard’s Data Science certificate [16] is an example of a
set of courses that provide a good introduction to working
with data.

Another open source software library you’re likely to en-
counter if you do any work with AI is TensorFlow [17]. It was
originally developed by researchers and engineers from the
Google Brain team within Google’s AI organization. Google
offers a variety of tutorials [18] to get started with TensorFlow
using the high-level Keras API. You can run TensorFlow lo-
cally as well as online in Google Cloud.

In general, all of the big public cloud providers offer on-
line datasets and ML services that can be an easy way to
get started. However, especially as you move beyond “play”
datasets and applications, you need to start thinking seri-
ously about the degree to which you want to be locked into
a single provider.

Datasets for your exploratory learning projects are
available from many different sources. In addition to the
public cloud providers, Kaggle [19] is another popular
source and also a good learning resource more broadly.
Government data is also increasingly available in digital
form. The US Federal Government’s Data.gov [20] claims
over 300,000 datasets. State and local governments also
publish data on everything from restaurant health ratings
to dogs’ names.

Miscellany
I’ll close by noting that AI is a broad topic that isn’t just about
math, programming, and data. AI as a whole touches many
other fields, including cognitive psychology, linguistics,
game theory, operations research, and control systems. In-
deed, a concern among at least some AI researchers today
is that the field has become too fixated on a small number
of techniques that have become powerful and interesting
only quite recently because of the intersection of process-
ing power and big data. Many longstanding problems in un-
derstanding how humans learn and reason remain largely
unsolved. Developing at least some appreciation for these
broader problem spaces will better enable you to place AI
within a broader context.

Research AI
In a lot of respects, a list of resources for research AI mirror
those in an undergraduate (or even graduate) computer sci-
ence program that’s focused on AI. The main difference is
that the syllabus you draw up may be more interdisciplinary
than more traditionally focused university curricula.

Where you start will depend on your computer science
and math background.

If it’s minimal or rusty, but you still want to develop a deep
understanding of AI fundamentals, you’ll benefit from taking
some math courses to start. There are many options on mas-
sive online open courses (MOOCs) like the nonprofit edX [2]
platform and Coursera [3]. (Both platforms charge for certi-
fications, but edX makes all the content available for free to
people just auditing the course.)

Typical foundational courses could include:
• �MIT’s Calculus courses [4], starting with differentiation
• �Linear Algebra [5] (University of Texas)
• �Probability and statistics, such as MIT’s Probability—The

Science of Uncertainty and Data [6]
To get deeper into AI from a research perspective, you’ll
probably want to get into all these areas of mathematics and
more. But the above should give you an idea of the general
branches of study that are probably most important before
delving into machine learning and AI proper.

In addition to MOOCs, resources such as MIT Open-
CourseWare [7] provide the syllabus and various supporting
materials for a wide range of mathematics and computer sci-
ence courses.

With the foundations in place, you can move onto more
specialized courses in AI proper. Andrew Ng’s AI MOOC,
from when he was teaching at Stanford, was one of the early
courses to popularize the whole online course space. Today,
his Neural Networks and Deep Learning [8] is part of the
Deep Learning specialization at Coursera. There are corre-
sponding programs on edX. For example, Columbia offers
an Artificial Intelligence MicroMasters [9].

In addition to courses, a variety of textbooks and other
learning material are also available online. These include:
• �Neural Networks and Deep Learning [10]
• �Deep Learning [11] from MIT Press by Ian Goodfellow and

Yoshua Bengio and Aaron Courville

Applied AI
Applied AI is much more focused on using available tools
than building new ones. Some appreciation of the math-
ematical underpinnings, especially statistics, is still use-
ful—arguably even necessary—but you won’t be majoring
in that aspect of AI to the same degree you would in a re-
search mode.

Programming is a core skill here. While different program-
ming languages can come into play, a lot of libraries and
toolsets—such as PyTorch [12]—rely on Python, so that’s
a good skill to have. Especially if you have some level of

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.edx.org/course/introduction-to-computer-science-and-programming-using-python
https://www.coursera.org/learn/python
https://www.r-project.org/about.html
https://www.edx.org/professional-certificate/harvardx-data-science
https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/
https://www.kaggle.com/
https://www.data.gov/
https://www.edx.org/
https://www.coursera.org/
https://www.edx.org/course/calculus-1a-differentiation
https://www.edx.org/course/linear-algebra-foundations-to-frontiers
https://courses.edx.org/courses/course-v1:MITx%2B6.431x%2B3T2018/course/
https://ocw.mit.edu/index.htm
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.edx.org/micromasters/columbiax-artificial-intelligence
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
https://pytorch.org/

L e a r n i n g
.

58	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

One of my favorite examples is the Humans and Au-
tonomy Lab [21] at Duke. The work in this lab touches
on all the challenges of humans working with machines,
such as how autopilots can create “Children of the Ma-
genta” [22] who are unable to take control quickly if the
automation fails. A basic brain-science course, such as
MIT’s Introduction to Psychology [23], provides some use-
ful context for the relationship between human intelligence
and machine intelligence. Another course in a similar vein,
but taught by the late Marvin Minsky from MIT’s Electrical
Engineering and Computer Science department, is The
Society of Mind [24].

If there’s one key challenge to learning about AI, it’s not
that raw materials and tools aren’t readily available. It’s that
there are so many of them. My objective hasn’t been to give
you a comprehensive set of pointers. Rather, it’s been to
both point out the different paths you can take and provide
you with some possible starting points. Happy learning!

Links
[1]	 https://www.youtube.com/watch?v=RLtI7r3QUyY
[2]	 https://www.edx.org/�
[3]	� https://www.coursera.org/
[4]	 �https://www.edx.org/course/calculus-1a-differentiation
[5]	� https://www.edx.org/course/linear-algebra-foundations-to-

frontiers
[6]	� https://courses.edx.org/courses/course-

v1:MITx+6.431x+3T2018/course/
[7]	� https://ocw.mit.edu/index.htm
[8]	� https://www.coursera.org/learn/neural-networks-deep-

learning
[9]	 �https://www.edx.org/micromasters/columbiax-artificial-

intelligence
[10]	� http://neuralnetworksanddeeplearning.com/
[11]	� http://www.deeplearningbook.org/

[12]	� https://pytorch.org/
[13]	� https://www.edx.org/course/introduction-to-computer-

science-and-programming-using-python
[14]	� https://www.coursera.org/learn/python
[15]	 �https://www.r-project.org/about.html
[16]	� https://www.edx.org/professional-certificate/harvardx-data-

science
[17]	� https://www.tensorflow.org/
[18]	� https://www.tensorflow.org/tutorials/
[19]	 �https://www.kaggle.com/
[20]	� https://www.data.gov/
[21]	� https://hal.pratt.duke.edu/
[22]	� https://99percentinvisible.org/episode/children-of-the-

magenta-automation-paradox-pt-1/
[23]	� https://ocw.mit.edu/courses/brain-and-cognitive-

sciences/9-00sc-introduction-to-psychology-fall-2011/
[24]	� https://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-868j-the-society-of-mind-fall-2011/

Author
Gordon Haff is Red Hat technology evangelist, is a frequent
and highly acclaimed speaker at customer and industry
events, and helps develop strategy across Red Hatís full
portfolio of cloud solutions. He is the co-author of Pots
and Vats to Computers and Apps: How Software Learned
to Package Itself in addition to numerous other publica-
tions. Prior to Red Hat, Gordon wrote hundreds of research
notes, was frequently quoted in publications like The New
York Times on a wide range of IT topics, and advised clients
on product and marketing strategies. Earlier in his career,
he was responsible for bringing a wide range of comput-
er systems, from minicomputers to large UNIX servers, to
market while at Data General. Gordon has engineering de-
grees from MIT and Dartmouth and an MBA from Cornellís
Johnson School.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://hal.pratt.duke.edu/
https://99percentinvisible.org/episode/children-of-the-magenta-automation-paradox-pt-1/
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-868j-the-society-of-mind-fall-2011/
https://www.youtube.com/watch?v=RLtI7r3QUyY
https://www.edx.org/
https://www.coursera.org/
https://www.edx.org/course/calculus-1a-differentiation
https://www.edx.org/course/linear-algebra-foundations-to-frontiers
https://www.edx.org/course/linear-algebra-foundations-to-frontiers
https://courses.edx.org/courses/course-v1:MITx%2B6.431x%2B3T2018/course/
https://courses.edx.org/courses/course-v1:MITx%2B6.431x%2B3T2018/course/
https://ocw.mit.edu/index.htm
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.edx.org/micromasters/columbiax-artificial-intelligence
https://www.edx.org/micromasters/columbiax-artificial-intelligence
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
https://pytorch.org/
https://www.edx.org/course/introduction-to-computer-science-and-programming-using-python
https://www.edx.org/course/introduction-to-computer-science-and-programming-using-python
https://www.coursera.org/learn/python
https://www.r-project.org/about.html
https://www.edx.org/professional-certificate/harvardx-data-science
https://www.edx.org/professional-certificate/harvardx-data-science
https://www.tensorflow.org/
https://www.tensorflow.org/tutorials/
https://www.kaggle.com/
https://www.data.gov/
https://hal.pratt.duke.edu/
https://99percentinvisible.org/episode/children-of-the-magenta-automation-paradox-pt-1/
https://99percentinvisible.org/episode/children-of-the-magenta-automation-paradox-pt-1/
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-2011/
https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-868j-the-society-of-mind-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-868j-the-society-of-mind-fall-2011/

L e a r n i n g
..........

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 59

The term serverless [1] has been coming up
in more conversations recently. Letís

clarify the concept, and those related to it, such as server-
less computing and server-
less platform.

Serverless is often used
interchangeably with the
term FaaS (Functions-as-
a-Service). But serverless
doesnít mean that there is
no server. In fact, there are
many servers–serverful–be-
cause a public cloud provid-
er provides the servers that
deploy, run, and manage
your application.

Serverless computing is an emerging category that
represents a shift in the way developers build and deliver
software systems. Abstracting application infrastructure
away from the code can greatly simplify the development
process while introducing new cost and efficiency bene-
fits. I believe serverless computing and FaaS will play an
important role in helping to define the next era of enter-
prise IT, along with cloud-native services and the hybrid
cloud [2].

Serverless platforms provide APIs that allow users to
run code functions (also called actions) and return the re-
sults of each function. Serverless platforms also provide
HTTPS endpoints to allow the developer to retrieve func-

tion results. These endpoints can be used as inputs for
other functions, thereby providing a sequence (or chain-
ing) of related functions.

On most serverless plat-
forms, the user deploys (or
creates) the functions before
executing them. The server-
less platform then has all the
necessary code to execute
the functions when it is told
to. The execution of a server-
less function can be invoked
manually by the user via a
command, or it may be trig-
gered by an event source
that is configured to activate

the function in response to events such as cron job alarms,
file uploads, or many others.

7 open source platforms to get started with
serverless computing
• �Apache OpenWhisk [3] is a serverless, open source cloud

platform that allows you to execute code in response to
events at any scale. Itís written in the Scala language. The
framework processes the inputs from triggers like HTTP re-
quests and later fires a snippet of code on either JavaScript
or Swift.

• �Fission [4] is a serverless computing framework that en-
ables developers to build functions using Kubernetes. It

7 �open source platforms
to get started with
serverless computing

 by Daniel Oh

Serverless computing is transforming traditional software development.
These open source platforms will help you get started.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://enterprisersproject.com/article/2018/9/what-serverless
https://enterprisersproject.com/hybrid-cloud
https://openwhisk.apache.org/
https://github.com/fission/fission

L e a r n i n g
.

60	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

allows coders to write short-lived functions in any program-
ming language and map them with any event triggers, such
as HTTP requests.

• �IronFunctions [5] is a serverless computing framework that
offers a cohesive microservices platform by integrating its
existing services and embracing Docker. Developers write
the functions in Go language.

• �Fn Project [6] is an open source container-native server-
less platform that you can run anywhere–on any cloud or
on-premise. Itís easy to use, supports every programming
language, and is extensible and performant.

• �OpenLambda [7] is an Apache-licensed serverless comput-
ing project, written in Go and based on Linux containers.
The primary goal of OpenLambda is to enable exploration
of new approaches to serverless computing.

• �Kubeless [8] is a Kubernetes-native serverless framework
that lets you deploy small bits of code without having to
worry about the underlying infrastructure. It leverages Ku-
bernetes resources to provide autoscaling, API routing,
monitoring, troubleshooting, and more.

• �OpenFaas [9] is a framework for building serverless func-
tions with Docker and Kubernetes that offers first-class
support for metrics. Any process can be packaged as a
function, enabling you to consume a range of web events
without repetitive boilerplate coding.

Kubernetes is the most popular platform to manage server-
less workloads and microservice application containers, us-
ing a finely grained deployment model to process workloads
more quickly and easily. With Knative Serving [10], you can
build and deploy serverless applications and functions on
Kubernetes and use Istio [11] to scale and support advanced
scenarios such as:
• �Rapid deployment of serverless containers
• �Automatic scaling up and down to zero
• �Routing and network programming for Istio components
• �Point-in-time snapshots of deployed code and configurations
Knative [12] focuses on the common tasks of building and run-
ning applications on cloud-native platforms for orchestrating
source-to-container builds, binding services to event ecosys-
tems, routing and managing traffic during deployment, and
autoscaling workloads. Istio is an open platform to connect
and secure microservices (effectively a service mesh control
plane to the Envoy proxy [13]) and has been designed to con-
sider multiple personas interacting with the framework, includ-
ing developers, operators, and platform providers.

For example, you can deploy a JavaScript serverless
workload using Knative Serving on a local Minishift [14] plat-
form with the following code snippets:

Dockerfile

FROM bucharestgold/centos7-s2i-nodejs:10.x

WORKDIR /opt/app-root/src

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 8080 3000

CMD ["npm", "start"]

package.json

{

 "name": "greeter",

 "version": "0.0.1",

 "private": true,

 "scripts": {

 "start": "node app.js"

 },

 "dependencies": {

 "express": "~4.16.0"

 }

}

app.js

var express = require("express");

var app = express();

var msg = (�process.env.MESSAGE_PREFIX || "") + "NodeJs::Knative

on OpenShift";

app.get("/", function(req, res, next) {

 res.status(200).send(msg);

});

app.listen(8080, function() {

 console.log("App started in port 8080");

});

service.yaml

apiVersion: serving.knative.dev/v1alpha1

kind: Service

metadata:

 name: greeter

spec:

 configuration:

 revisionTemplate:

 spec:

 container:

 image: dev.local/greeter:0.0.1-SNAPSHOT

Build your Node.js serverless application and deploy the
service on local Kubernetes platform. Install Knative, Is-
tio, Knative Serving on Kubernetes (or Minishift) [15] as
prerequisites.

1. �Attach to the Docker daemon using the following the
commands:

 (minishift docker-env) && eval(minishift oc-env)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/iron-io/functions
https://fnproject.io/
https://open-lambda.org/
https://kubeless.io/
https://docs.openfaas.com/
https://github.com/knative/serving
https://istio.io/
https://github.com/knative/
https://www.envoyproxy.io/
https://github.com/minishift/minishift
https://github.com/knative/docs/blob/master/install/Knative-with-Minishift.md

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 61

2. �Build a serverless application container image using the
following the commands with Jib [16]:

 ./mvnw -DskipTests clean compile jib:dockerBuild

3. �Deploy a serverless service such as Minishift to your Ku-
bernetes cluster:

 kubectl apply -f service.yaml

Conclusion
The example above shows where and how to start develop-
ing the serverless application with a cloud-native platform
such as Kubernetes, Knative Serving, and Istio.

Links
[1]	 �https://enterprisersproject.com/article/2018/9/what-

serverless
[2]	 �https://enterprisersproject.com/hybrid-cloud

[3]	� https://openwhisk.apache.org/
[4]	� https://github.com/fission/fission
[5]	� https://github.com/iron-io/functions
[6]	� https://fnproject.io/
[7]	� https://open-lambda.org/
[8]	� https://kubeless.io/
[9]	� https://docs.openfaas.com/
[10]	 �https://github.com/knative/serving
[11]	 �https://istio.io/
[12]	� https://github.com/knative/
[13]	� https://www.envoyproxy.io/
[14]	� https://github.com/minishift/minishift
[15]	� https://github.com/knative/docs/blob/master/install/

Knative-with-Minishift.md
[16]	� https://github.com/GoogleContainerTools/jib

Author
Daniel is a DevOps evangelist, CNCF ambassador, developer,
speaker, writer, and Opensource.com author.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/GoogleContainerTools/jib
https://enterprisersproject.com/article/2018/9/what-serverless
https://enterprisersproject.com/article/2018/9/what-serverless
https://enterprisersproject.com/hybrid-cloud
https://openwhisk.apache.org/
https://github.com/fission/fission
https://github.com/iron-io/functions
https://fnproject.io/
https://open-lambda.org/
https://kubeless.io/
https://docs.openfaas.com/
https://github.com/knative/serving
https://istio.io/
https://github.com/knative/
https://www.envoyproxy.io/
https://github.com/minishift/minishift
https://github.com/knative/docs/blob/master/install/Knative-with-Minishift.md
https://github.com/knative/docs/blob/master/install/Knative-with-Minishift.md
https://github.com/GoogleContainerTools/jib
http://www.Opensource.com

C R E A T i n g
.

62	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

It’s pretty well known that Linux is a
big deal in modern

movie making. Linux is the standard base, a literal industry
standard [1] for digital effects but, like all technology with
momentum, it seems that the process of cutting footage still
defaults mostly to a non-Linux platform. Slowly, however,
as artists seek to simplify and consolidate the post-produc-
tion pipeline, Linux video editing is gaining in popularity.

It can be difficult to talk about video editing objectively
because it means so many different things to different
people. For instance, to some people a video editing
application must be able to
generate fancy animated
title sequences, while pro-
fessional users balk at the
idea of doing serious work
on titles in their video edi-
tor. It’s not unlike the de-
bate over professional SLR
cameras that happened
when digital cameras in
phones became contenders
for serious photography.

For this reason, a prag-
matic overview of a Linux-based video editor needs two
broad qualifiers: How it performs for home users, and how
it might integrate into a professional pipeline.

Defining key terms
• �Independent: For the purposes of this article, I’ll call a

workflow that begins and ends with either one video edit-
ing software or one computer system either “independent”
or “hobbyist.” In other words, an independent or hobbyist
filmmaker is likely to use one application to do video edit-
ing, maybe a few other applications for specialized tasks
like audio sweetening or motion graphics, and then they’re
done. Their project is exported and delivered.

• �Professional integration: A “professional” editor probably
also uses only one application to edit video, but that’s be-

cause they’re a cog in a larg-
er machine. A professional
editor might get their footage
from a producer or director,
and when they’re done they
probably aren’t exporting the
final version that their audi-
ences are going to see, but
they’ll pass their work on to
audio engineers, VFX art-
ists, and colorists.

Top pro pick: Kdenlive
Kdenlive [2] is the best-in-class professional open source
editing application, hands-down. As long as you run a stable
version of Kdenlive on a stable Linux OS, use reasonable

The current state of
Linux video editing 2018

 by Seth Kenlon

Linux is a big deal in modern movie-making. Whether you’re a hobbyist or a professional, you can
find Linux software that meets your needs.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://vfxplatform.com
https://kdenlive.org/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 63

• �And for serious home editors and independent movie mak-
ers, Kdenlive is worth learning [12] and using [13], and it
is likely to satisfy all requirements. It may not always be a
drop-in replacement if you’re transitioning from some other
editor, but it’s familiar enough to keep the learning curve
manageable.

Professional integration
• �If you’re working in a production environment with an es-

tablished workflow, then any change to your editor requires
adaptation.

• �Kdenlive saves projects as an XML file, so it’s possi-
ble to convert an existing edit decision list (EDL) to a
Kdenlive project file, although there aren’t any official au-
to-converters available yet, so round trips (i.e., returning
to the original application) out of Kdenlive would require
intervention. Alternately, round trips can be done with
lossless clip exports, which can be reintegrated into a
project after whatever has been applied from the exter-
nal application.

• �The same holds true for audio [14]. You can render audio
to a file and import into an external digital audio work-
station (DAW), but currently there’s no native, built-in
audio-export target for popular formats like Open Media
Framework (OMF).

• �For the most part, as long as your pipeline isn’t perilously
rigid, Kdenlive can exist within any professional environ-
ment. It can output video, audio, and image sequences,
and it’s hard to imagine a workflow where such generic out-
put isn’t acceptable.

Hobbyist pick: OpenShot
OpenShot [15] is a simple but robust video editor. If you’re
not interested in learning the finer details on how to edit vid-
eo, then OpenShot is for you. It doesn’t scale up; a profes-
sional editor will find it restrictive, but for a quick and easy
edit, OpenShot is a great choice on any OS.

Strengths
• �OpenShot is focused. It understands exactly what its au-

dience wants: the ability to make attractive videos with
minimal fuss. Its interface is intuitive, and what you can’t
immediately figure out from context, you can access with
a right-click.

file formats, and keep your work organized, you’ll have a re-
liable, professional-quality editing experience.

Strengths
• �The interface is intuitive for anyone who has ever used a

professional-style editing application.
• �The way you work in Kdenlive is natural and flexible, allow-

ing you to use both of the major styles of editing: cutting by
numbers and just mousing around in the timeline [3].

• �Kdenlive has plenty of capabilities beyond just cutting up
footage. It can do some advanced visual effects, like mask-
ing [4], all manner of composting (see this [5], this [6], and
this [7]), color correction [8], offline “proxy” editing [9], and
much much more.

Weaknesses
• �The greatest weakness of open source editing is also

its greatest strengths: Kdenlive lets you throw nearly
anything you want at it, even if that sometimes means
its performance suffers. You should resist the urge to
take advantage of this flexibility and instead manage
your assets and formats smartly. Instead of using an
MP3, convert the MP3 to WAV first (which is what other
editors do for you, but they do it “behind the scenes”).
Don’t throw in an animated GIF without first breaking it
out into a series of images. And so on. Gaining flexibil-
ity means you gain the responsibility for maintaining a
sensible media library.

• �The interface, while accounting for both “traditional” edit-
ing styles and the “modern” style of treating the timeline
as a sort of scratchpad, wouldn’t really satisfy an editor
who wants to cut by numbers. Currently, there’s no way, for
instance, to modify or move clips with quick number-pad
entries (typing +6, for instance, has no effect on a video
region’s placement in the timeline).

Independent
• �If anything, Kdenlive could be overkill for home users who

aren’t accustomed to professional-style editing. Basic oper-
ations of the interface are mostly intuitive, but new editors
might feel that there’s a learning curve for advanced opera-
tions (like layered composting [10] and offline editing [11]).

• �On the other hand, it scales down well. You can use a
fraction of its features and find it a pretty simple, mostly
intuitive editor.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/ebook/video-editing
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/9/audio-and-video-xjadeo
https://www.openshot.org/
https://opensource.com/life/15/6/mastering-timeline-kdenlive
https://opensource.com/life/15/11/basic-masking-kdenlive
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/12/10-kdenlive-tools
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/11/11/kdenlive-part-4-colour-correction
https://opensource.com/life/16/1/offline-editing-kdenlive
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/16/1/offline-editing-kdenlive

C R E A T i n g
.

64	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

• �The most common transition, a crossfade, is available by
overlapping the edges of two clips. This is such a simple
and obvious trick, but it cuts down on so many mouse clicks
that you’ll wonder why all video editors don’t do that.

• �It’s also a very conservative application. You won’t see a
new OpenShot release every month, and that’s a good
thing. You can download OpenShot as an AppImage today
and use it for the next year or more. It’s a beautiful, comfort-
able, simple piece of software.

Weaknesses
• �A hobbyist’s strengths are a pro’s weaknesses. It’s a de-

liberately simplified system, and little conveniences like
the auto-crossfades are unwelcome to a professional
editor who doesn’t necessarily want clips to crossfade
when they overlap.

• �OpenShot doesn’t have a very robust engine for real-time
effects. Too many dynamic effects severely slow playback.

Independent
• �An independent or hobbyist editor with simple needs will

find OpenShot perfect. It’s an easy install, it has all the
usual benefits of open source multimedia (near indiffer-
ence to codecs, no false limitations or paywalls for ad-
vanced features).

Professional integration
• �Integrating OpenShot with a larger pipeline is possible, but

only in the sense that it can output generic video and audio
files and image sequences. Its project file format, however,
is also open source, and it saves into a JSON format that
theoretically could be leveraged for an EDL, but there’s no
built-in exporter for that.

Everything else
Kdenlive and OpenShot are my top picks, the open source
editors an editor ought to turn to for a quick fix, but there are,
of course, several others to look at.

Flowblade [16]
Flowblade is a simplified video editor that focuses on the ed-
itorial process. If you’re an experienced editor and just want
to get down to business, or you ‘re a hobbyist who needs little
more than an interface to assemble video clips in sequence,
then Flowblade’s minimal interface may appeal to you.

Strengths
• �A no-frills, stable application for quick, no-nonsense cutting.
• �Its workflow favors a traditional cutting style: mark in, mark

out, dump into timeline. Rinse and repeat.
• �This makes it slightly less convenient to stumble around

your project in search of a good edit, but that’s what makes
it so efficient and smooth when you know what you want.

• �A professional-level editor who lives to count frames and
edit on the keyboard will love Flowblade.

Weaknesses
• �Flowblade’s interface is arguably overly simple.
• �At the time of this writing, its keyboard shortcuts are not

user-definable (although it’s written in Python, so an editor
fluent in Python can adjust preferences by brute force).

Independent
• �Many of the “obvious” things a hobbyist would expect from

a video editor just don’t happen in Flowblade. For instance,
moving a clip once it’s in the timeline requires activation of
an “overwrite” mode, since otherwise clips “float” left.

Professional integration
• �In addition to generic video and audio files, Flowblade can

export to MLT XML for use with the open source multimedia
framework [17] that powers it, as well a plain text, parse-
able EDL. Additionally, Flowblade’s project format is plain
text and could be used to extract information for a custom
EDL format.

• �These options don’t provide specialized hooks into specif-
ic applications, but it’s certainly enough of a variety that a
simple converter should be able to import the information.

Blender [18]
Blender excels at efficiency. Once you know how to interact
with its interface, you can accomplish amazing things amaz-
ingly quickly. Transferring this kind of efficiency over to video
editing is a dream come true.

Strengths
• �By default, Blender’s video sequence editor (VSE) is, from

what I can tell, optimized for only the most basic “editing”
tasks. This makes sense, given that in the animation and
VFX world, there isn’t generally excess footage. Artists
work on shots that have already been finalized, so the only
editing task after all the animation is done is to reintegrate

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jliljebl.github.io/flowblade/
https://www.mltframework.org
https://www.blender.org/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 65

shots into the final cut of the movie. Luckily, though, there
are several plugins (such as Easy-Logging [19] and the
Blender Velvets [20]) in active development to apply tradi-
tional editing interface conventions to Blender’s VSE mode,
and they manage to transform Blender into a very usable
video editing software.

• �Blender is stable, fully cross-platform, popular, and under
steady development. Using it to edit video isn’t exactly
common, but the application as a framework for multimedia
work is robust and reliable.

Weaknesses
• �If you’re expecting a traditional editing platform, Blender’s

weaknesses are many. Its interface can be confusing, and
the UI is unconventional as a video editor, at best. Even
with VSE plugins and personal customizations, the inter-
face is mostly utilitarian.

• �Blender’s rendering engines are backends for 3D model ren-
dering. Rendering a video sequence, especially with effects
(like color correction, which one would expect to have on
each clip in a primary editing application) applied to each
clip, takes far longer (10x as long from Kdenlive and Flow-
blade, in my most recent tests) than rendering from any oth-
er video editor. This might be partly because the Blender
interface offers no control over FFmpeg [21] threads.

• �The VSE lacks integration with the rest of Blender. You can-
not, for instance, attach clips from your VSE edit into the
node editor and apply fancy effects. In Blender’s internal
pipeline, the VSE is definitely a separate process.

Independent
• �A hobbyist who knows nothing about Blender will find a

steep learning curve. Even with VSE add-ons to make the
VSE act more like a “normal” application, anything beyond
basic cuts and sequencing just doesn’t work the way most
users would expect.

• �Like all powerful applications, however, Blender is by all
means worth knowing. In terms of application design, it’s
one of the best examples, outside of Emacs, of combin-
ing internal logic and consistency with endless extensi-
bility to produce a powerful, unstoppable force of com-
putational wonder.

Professional integration
• �Depending on your industry, your production house may

already be using Blender, if not for video editing then for
animation or motion graphics.

• �There are several EDL export [22] add-ons available, and
Blender’s seamless integration with Python makes it trivi-
al for a technically minded editor or support staff to export
whatever information is necessary to blend Blender into
any pipeline.

Shotcut [23]
Shotcut is a video editor being developed by Dan Dennedy,
an MLT [24] co-founder and current project lead. It is de-
signed from the ground up to be cross-platform and lever-

ages new technologies like WebVfx (visual effects created
with web technologies) and Movit (GPU image processing).

Strengths
• �Shotcut is using the latest in open source technology to

provide performance unlike any other open source video
editor. Its real-time effects are smooth as is, and they will
get even better once it’s offloaded onto the GPU.

• �The interface is mostly familiar, although some liberties are
taken in the interest of progress. One wonders if mobile
devices are on the roadmap, because much of the interface
design would work well on a tablet or a large phone screen.

• �Shotcut is JACK-aware, so tethering it to a pro audio appli-
cation like Ardour is trivial.

Weaknesses
• �Shotcut is a little progressive, so there’s a learning curve

involved where its interface implements something differ-
ent than the de facto standard. For instance, the workflow
in a traditional editor is: bring a clip into your bin, open that
clip from the bin, mark in and out, and put it in the timeline.
With Shotcut, however, there’s no internal import process
to populate your bin (“playlist,” in Shotcut terminology). You
can either drag and drop from your file manager or you can
open a clip and add that clip to your playlist, or you can
bypass the playlist entirely and just add it to your timeline.

• �It’s less esoteric, for example, there’s no way to group select
several clips in the timeline to move them. You can insert
clips in front of them, but editors used to using their timeline
as a scratchpad with lots of groups of edited scenes might
find this limitation troublesome.

• �The effect stack is still a work in progress. Important effects,
like a chromakey (green screen), are missing. They’re be-
ing added as the dev team perfects their interfaces and
functionality.

Independent
• �For basic editing, Shotcut is a breeze. It’s uncluttered, rel-

atively lightweight, and functional. It’s got everything you
need and doesn’t offer a lot of options you probably don’t
intend to use.

• �In its current state, it doesn’t scale up. When you hit its ceil-
ing, you’ll have to move to another application. For some,
this might be when they suddenly realize they need to do
complex composites (to be fair, it’s arguable that complex

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://easy-logging.net/
http://blendervelvets.org
http://ffmpeg.org
https://github.com/tin2tin/ExportEDL
https://shotcut.org/
http://mltframework.org

C R E A T i n g
.

66	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

signed for keyboard and shuttle control. Hobbyists or
editors who were trained to do their editing with the
mouse might find Lightworks a little difficult to get used
to. With each new version, the timeline gets a little more
mouse-friendly, but the overall design is somewhat
technical.

Independent
• �Lightworks is probably overkill for the hobbyist. It works

well, but there’s a learning curve and an emphasis on pre-
cision and professionalism that will probably get in the way
for people who just want to edit.

Professional integration
• �Lightworks exports to a number of formats, such as OMF

and AAF, so it’s prepared to communicate with whatever’s
next in your pipeline. If it doesn’t export to what you need, it
does export to a variety of video and audio formats.

Da Vinci Resolve [28]
Coming from Da Vinci’s color correction suite, and once tied
to a proprietary hardware suite, Resolve is a cross-platform
editor distributed for $0.
Strengths
• �Da Vinci has been an industry standard for decades, and

while Resolve is technically relatively new, many profes-
sionals in the industry have some familiarity with the sys-
tem in general.

Weaknesses
• �Resolve, like Lightworks, has hefty hardware requirements.

If your system doesn’t meet its requirements, it doesn’t run.
There’s no lightweight mode, even if you just want to do
some basic edits.

• �Resolve is not open source.
Independent
• �Resolve is probably overkill for hobbyists, but its interface is

flexible and allows for several editing styles. Its interface is
fairly intuitive; if you’ve used a video-editing application be-
fore, you can probably figure out Resolve with an afternoon
and a few online tutorial videos.

Professional integration
• �Da Vinci exports to several exchange formats as well as

video, audio, and image sequences.

Hiero [29]
Hiero isn’t, strictly speaking, a video editor, but a show view-
er. However, it’s set up such that clips can be arranged and
adjusted, so it sometimes gets used as a video editing solu-
tion by artists familiar with other Foundry tools.

All the rest
Of course, there are still more options. Some, like Pitivi [30]
and Cinelerra [31], are less active and less stable now than
they may have once been, others, like Avidemux [32], are
limited in scope, and still others, like using FFmpeg directly,
are just too niche to cover.

composites shouldn’t be done in a video editing application
at all, but that doesn’t change expectations), while for others
it will be small interface preferences, like Shotcut’s inability
to dynamically create a new audio track when dragging an
audio-only clip into a timeline with only one video track.

Professional integration
• �Shotcut isn’t production-ready yet, but since a true profes-

sional is more than the sum of the tools, it could be used
in a professional setting. Shotcut can export an EDL, and
it stores its project files as MLT XML, so you could extract
information for a custom EDL format as needed.

Non-open editors
There’s a handful of cross-platform editors that are not open
source. However, they can run on an otherwise open stack
(in other words, they are fully Linux-compatible), which is a
pretty common paradigm in the professional film world.

A not insignificant advantage to these closed-source solu-
tions is that a team of editors can use the same software
regardless of the OS they’re running.

Lightworks [25]
A long-time editing solution in Hollywood, Lightworks is now
free to download. While its natural approach to editing defers
to a traditional film workflow, working in the timeline is pos-
sible and new features are constantly being added to make
sandboxing in the timeline comfortable. The free version is
basically a complete solution for serious editng, but if you
pay for a subscription you “unlock” better codec support and
a few effects (which are, awkwardly, not cross-platform).
Strengths
• �Nobody would call Lightworks the industry standard, but it

is an Emmy award winner and has a long history of profes-
sional use before it became no-cost software independent
of its hardware stack. It’s a robust application with some se-
rious pro features, such as timeline effects, codec support,
lots of export formats, and a unique but efficient interface.

• �It’s a technical editing environment. It’s very aware of
editing decisions and timecode and frame numbers, so
if you are a professional editor who needs to know that
your edit can conform later in the pipeline, Lightworks
won’t let you down.

• �Real-time effects are well supported in Lightworks, so per-
formance is as good as your system specs provide.

Weaknesses
• �It’s not open source. Its development team announced

many years ago [26] that the code would be released in
Q3 of 2012; now the official stance in the forums [27] is that
“Lightworks is freemium software.”

• �Furthermore, Lightworks is not a lightweight application. It
expects a powerful rig, and at a certain point, it bottoms out
and just plain won’t run.

• �Lightworks’ default editing style in many ways mimics
the traditional film-editing process. Its timeline is de-

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.blackmagicdesign.com/products/davinciresolve/
https://www.foundry.com/products/hiero
http://www.pitivi.org/
http://cinelerra.org/
http://avidemux.sourceforge.net/
https://www.lwks.com/
https://editshare.wordpress.com/tag/editshareflow/page/3/
https://www.lwks.com/index.php?option=com_kunena&func=view&catid=42&id=164255&Itemid=81

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 67

[16]	� https://jliljebl.github.io/flowblade/
[17]	 �https://www.mltframework.org
[18]	 �https://www.blender.org/
[19]	� http://easy-logging.net/
[20]	 �http://blendervelvets.org
[21]	� http://ffmpeg.org
[22]	� https://github.com/tin2tin/ExportEDL
[23]	� https://shotcut.org/
[24]	 http://mltframework.org
[25]	 �https://www.lwks.com/
[26]	� https://editshare.wordpress.com/tag/editshareflow/page/3/
[27]	� https://www.lwks.com/index.php?option=com_

kunena&func=view&catid=42&id=164255&Itemid=81�
[28]	 �https://www.blackmagicdesign.com/products/

davinciresolve/
[29]	� https://www.foundry.com/products/hiero
[30]	� http://www.pitivi.org/
[31]	 �http://cinelerra.org/
[32]	� http://avidemux.sourceforge.net/

Author
Seth Kenlon is an independent multimedia artist, free culture
advocate, and UNIX geek. He has worked in the film and
computing industry, often at the same time. He is one of the
maintainers of the Slackware-based multimedia production
project, http://slackermedia.info

The point is that there are plenty of very good video editing
solutions for Linux. All you have to do is choose one, and get
creative.

Links
[1]	 �http://vfxplatform.com
[2]	 �https://kdenlive.org/
[3]	� https://opensource.com/life/15/6/mastering-timeline-

kdenlive
[4]	� https://opensource.com/life/15/11/basic-masking-kdenlive
[5]	� https://opensource.com/life/15/3/creating-split-screen-

shots-kdenlive
[6]	� https://opensource.com/life/15/12/10-kdenlive-tools
[7]	 �https://opensource.com/life/15/4/layered-compositing-

kdenlive
[8]	 �https://opensource.com/life/11/11/kdenlive-part-4-colour-

correction
[9]	� https://opensource.com/life/16/1/offline-editing-kdenlive
[10]	� https://opensource.com/life/15/4/layered-compositing-

kdenlive
[11]	� https://opensource.com/life/16/1/offline-editing-kdenlive
[12]	� https://opensource.com/resources/ebook/video-editing
[13]	 �https://opensource.com/life/15/3/creating-split-screen-

shots-kdenlive
[14]	� https://opensource.com/life/15/9/audio-and-video-xjadeo
[15]	� https://www.openshot.org/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jliljebl.github.io/flowblade/
https://www.mltframework.org
https://www.blender.org/
http://easy-logging.net/
http://blendervelvets.org
http://ffmpeg.org
https://github.com/tin2tin/ExportEDL
https://shotcut.org/
http://mltframework.org
https://www.lwks.com/
https://editshare.wordpress.com/tag/editshareflow/page/3/
https://www.lwks.com/index.php?option=com_kunena&func=view&catid=42&id=164255&Itemid=81
https://www.lwks.com/index.php?option=com_kunena&func=view&catid=42&id=164255&Itemid=81
https://www.blackmagicdesign.com/products/davinciresolve/
https://www.blackmagicdesign.com/products/davinciresolve/
https://www.foundry.com/products/hiero
http://www.pitivi.org/
http://cinelerra.org/
http://avidemux.sourceforge.net/
http://www.imdb.com/name/nm1244992
http://people.redhat.com/skenlon
http://slackermedia.info
http://vfxplatform.com
https://kdenlive.org/
https://opensource.com/life/15/6/mastering-timeline-kdenlive
https://opensource.com/life/15/6/mastering-timeline-kdenlive
https://opensource.com/life/15/11/basic-masking-kdenlive
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/12/10-kdenlive-tools
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/11/11/kdenlive-part-4-colour-correction
https://opensource.com/life/11/11/kdenlive-part-4-colour-correction
https://opensource.com/life/16/1/offline-editing-kdenlive
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/15/4/layered-compositing-kdenlive
https://opensource.com/life/16/1/offline-editing-kdenlive
https://opensource.com/resources/ebook/video-editing
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/3/creating-split-screen-shots-kdenlive
https://opensource.com/life/15/9/audio-and-video-xjadeo
https://www.openshot.org/

O L D S C H O O L

68	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Open source has taken a prominent role
in the IT industry today. It is

everywhere from the smallest embedded systems to the big-
gest supercomputer, from the phone in your pocket to the
software running the websites and infrastructure of the com-
panies we engage with every day. Let’s explore how we got
here and discuss key moments from the past 40 years that
have paved a path to the current day.

1. RMS and the printer
In the late 1970s, Richard M. Stallman (RMS) [1] was a staff pro-
grammer at MIT. His department, like those at many universities
at the time, shared a PDP-10 computer and a single printer. One
problem they encountered was that paper would regularly jam
in the printer, causing a string of print jobs to pile up in a queue
until someone fixed the jam. To get around this problem, the MIT
staff came up with a nice social hack: They wrote code for the
printer driver so that when it jammed, a message would be sent
to everyone who was currently waiting for a print job: “The printer
is jammed, please fix it.” This way, it was never stuck for long.

In 1980, the lab accepted a donation of a brand-new laser
printer. When Stallman asked for the source code for the print-
er driver, however, so he could reimplement the social hack to
have the system notify users on a paper jam, he was told that
this was proprietary information. He heard of a researcher in a
different university who had the source code for a research proj-
ect, and when the opportunity arose, he asked this colleague to
share it—and was shocked when they refused. They had signed
an NDA, which Stallman took as a betrayal of the hacker culture.

The late ‘70s and early ‘80s represented an era where
software, which had traditionally been given away with the
hardware in source code form, was seen to be valuable. In-
creasingly, MIT researchers were starting software compa-
nies, and selling licenses to the software was key to their
business models. NDAs and proprietary software licenses
became the norms, and the best programmers were hired
from universities like MIT to work on private development
projects where they could no longer share or collaborate.

As a reaction to this, Stallman resolved that he would cre-
ate a complete operating system that would not deprive us-
ers of the freedom to understand how it worked, and would

allow them to make changes if they wished. It was the birth
of the free software movement.

2. Creation of GNU and the advent of free software
By late 1983, Stallman was ready to announce his project
and recruit supporters and helpers. In September 1983, he
announced the creation of the GNU project [2] (GNU stands
for GNU’s Not Unix—a recursive acronym). The goal of the
project was to clone the Unix operating system to create a
system that would give complete freedom to users.

In January 1984, he started working full-time on the proj-
ect, first creating a compiler system (GCC) and various oper-
ating system utilities. Early in 1985, he published “The GNU
Manifesto [3],” which was a call to arms for programmers to
join the effort, and launched the Free Software Foundation
in order to accept donations to support the work. This docu-
ment is the founding charter of the free software movement.

3. The writing of the GPL
Until 1989, software written and released by the Free Soft-
ware Foundation [4] and RMS did not have a single license.
Emacs was released under the Emacs license, GCC was
released under the GCC license, and so on; however, after
a company called Unipress forced Stallman to stop distrib-
uting copies of an Emacs implementation they had acquired
from James Gosling (of Java fame), he felt that a license to
secure user freedoms was important.

The first version of the GNU General Public License was
released in 1989, and it encapsulated the values of copyleft
(a play on words—what is the opposite of copyright?): You
may use, copy, distribute, and modify the software covered
by the license, but if you make changes, you must share
the modified source code alongside the modified binaries.
This simple requirement to share modified software, in com-
bination with the advent of the internet in the 1990s, is what
enabled the decentralized, collaborative development model
of the free software movement to flourish.

4. “The Cathedral and the Bazaar”
By the mid-1990s, Linux was starting to take off, and free
software had become more mainstream—or perhaps “less

6 pivotal moments
in open source history

 by Dave Neary

Here’s how open source developed from a printer jam solution at MIT to a major development model
in the tech industry today.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Richard_Stallman
https://groups.google.com/forum/#!original/net.unix-wizards/8twfRPM79u0/1xlglzrWrU0J
https://www.gnu.org/gnu/manifesto.en.html
https://www.fsf.org/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 69

There was some disagreement, however. Richard
Stallman and the Free Software Foundation continued to
champion the term “free software,” because to them, the
fundamental difference with proprietary software was user
freedom, and the availability of source code was just a
means to that end. Stallman argued that removing the fo-
cus on freedom would lead to a future where source code
would be available, but the user of the software would not
be able to avail of the freedom to modify the software. With
the advent of web-deployed software-as-a-service and
open source firmware embedded in devices, the battle con-
tinues to be waged today.

6. Corporate investment in open source—VA
Linux, Red Hat, IBM
In the late 1990s, a series of high-profile events led to a huge
increase in the professionalization of free and open source
software. Among these, the highest-profile events were the
IPOs of VA Linux and Red Hat in 1999. Both companies had
massive gains in share price on their opening days as pub-
licly traded companies, proving that open source was now
going commercial and mainstream.

Also in 1999, IBM announced that they were supporting Linux
by investing $1 billion in its development, making is less risky to
traditional enterprise users. The following year, Sun Microsys-
tems released the source code to its cross-platform office suite,
StarOffice, and created the OpenOffice.org [7] project.

The combined effect of massive Silicon Valley funding of
open source projects, the attention of Wall Street for young
companies built around open source software, and the mar-
ket credibility that tech giants like IBM and Sun Microsys-
tems brought had combined to create the massive adoption
of open source, and the embrace of the open development
model that helped it thrive have led to the dominance of Li-
nux and open source in the tech industry today.

Links
[1]	� https://en.wikipedia.org/wiki/Richard_Stallman
[2]	 �https://groups.google.com/forum/#!original/net.unix-

wizards/8twfRPM79u0/1xlglzrWrU0J
[3]	� https://www.gnu.org/gnu/manifesto.en.html
[4]	� https://www.fsf.org/
[5]	� https://en.wikipedia.org/wiki/The_Cathedral_and_the_

Bazaar
[6]	� https://opensource.com/article/18/2/coining-term-open-

source-software
[7]	 �http://www.openoffice.org/

Author
Dave Neary is a member of the Open Source and Standards
team at Red Hat, helping make Open Source projects im-
portant to Red Hat be successful. Dave has been around the
free and open source software world, wearing many different
hats, since sending his first patch to the GIMP in 1999.

fringe” would be more accurate. The Linux kernel was being
developed in a way that was completely different to anything
people had been seen before, and was very successful do-
ing it. Out of the chaos of the kernel community came order,
and a fast-moving project.

In 1997, Eric S. Raymond published the seminal essay,
“The Cathedral and the Bazaar [5],” comparing and contrast-
ing the development methodologies and social structure of
GCC and the Linux kernel and talking about his own expe-
riences with a “bazaar” development model with the Fetch-
mail project. Many of the principles that Raymond describes
in this essay will later become central to agile development
and the DevOps movement—”release early, release often,”
refactoring of code, and treating users as co-developers are
all fundamental to modern software development.

This essay has been credited with bringing free software
to a broader audience, and with convincing executives at
software companies at the time that releasing their software
under a free software license was the right thing to do. Ray-
mond went on to be instrumental in the coining of the term
“open source” and the creation of the Open Source Institute.

”The Cathedral and the Bazaar” was credited as a key doc-
ument in the 1998 release of the source code for the Nets-
cape web browser Mozilla. At the time, this was the first major
release of an existing, widely used piece of desktop software
as free software, which brought it further into the public eye.

5. Open source
As far back as 1985, the ambiguous nature of the word
“free”, used to describe software freedom, was identified as
problematic by RMS himself. In the GNU Manifesto, he iden-
tified “give away” and “for free” as terms that confused zero
price and user freedom. “Free as in freedom,” “Speech not
beer,” and similar mantras were common when free software
hit a mainstream audience in the late 1990s, but a number of
prominent community figures argued that a term was needed
that made the concept more accessible to the general public.

After Netscape released the source code for Mozilla in
1998 (see #4), a group of people, including Eric Raymond,
Bruce Perens, Michael Tiemann, Jon “Maddog” Hall, and
many of the leading lights of the free software world, gath-
ered in Palo Alto to discuss an alternative term. The term
“open source” was coined by Christine Peterson [6] to de-
scribe free software, and the Open Source Institute was lat-
er founded by Bruce Perens and Eric Raymond. The fun-
damental difference with proprietary software, they argued,
was the availability of the source code, and so this was what
should be put forward first in the branding.

Later that year, at a summit organized by Tim O’Reilly,
an extended group of some of the most influential people in
the free software world at the time gathered to debate vari-
ous new brands for free software. In the end, “open source”
edged out “sourceware,” and open source began to be
adopted by many projects in the community.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.openoffice.org/
https://en.wikipedia.org/wiki/Richard_Stallman
https://groups.google.com/forum/#!original/net.unix-wizards/8twfRPM79u0/1xlglzrWrU0J
https://groups.google.com/forum/#!original/net.unix-wizards/8twfRPM79u0/1xlglzrWrU0J
https://www.gnu.org/gnu/manifesto.en.html
https://www.fsf.org/
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
http://www.openoffice.org/
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://opensource.com/article/18/2/coining-term-open-source-software

O L D S C H O O L

70	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Git [1], the distributed revision-control system that’s
become the default tool for source code control

in the open source world, turned 13 on April 7. One of
the more frustrating things about using Git is how much
you need to know to use it effectively. This can also be
one of the more awesome things about using Git, because
there’s nothing quite like discovering a new tip or trick that
can streamline or improve your workflow.

In honor of Git’s 13th birthday, here are 13 tips and
tricks to make your Git experience more useful and power-
ful, starting with some basics you might have overlooked
and scaling up to some real power-user tricks!

1. Your ~/.gitconfig file
The first time you tried to use the git command to commit
a change to a repository, you might have been greeted with
something like this:

*** Please tell me who you are.

Run

 git config --global user.email "you@example.com"

 git config --global user.name "Your Name"

to set your account's default identity.

What you might not have realized is that those commands
are modifying the contents of ~/.gitconfig, which is where

Git stores global configuration options. There are a vast ar-
ray of things you can do via your ~/.gitconfig file, including
defining aliases, turning particular command options on (or
off!) on a permanent basis, and modifying aspects of how
Git works (e.g., which diff algorithm git diff uses or what
type of merge strategy is used by default). You can even
conditionally include other config files based on the path to a
repository! See man git-config for all the details.

2. Your repo’s .gitconfig file
In the previous tip, you may have wondered what that
--global flag on the git config command was doing. It
tells Git to update the “global” configuration, the one found
in ~/.gitconfig. Of course, having a global config also

13 Git tips for Git’s
13th birthday

 by John SJ Anderson

Make your revision-control experience more useful and powerful
with these 13 tricks and tips for Git.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://git-scm.com/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 71

periodically merge the changes from the upstream repo into
my fork—which I do by using an alias I call upstream-merge.
It’s defined like this:

up�stream-merge = !"git fetch origin -v && git fetch upstream -v

&& git merge upstream/master && git push"

The ! at the beginning of the alias definition tells Git to run
the command via the shell. This example involves running
a number of git commands, but aliases defined in this way
can run any shell command.

(Note that if you want to copy my upstream-merge alias,
you’ll need to make sure you have a Git remote named up-
stream pointed at the upstream repository you’ve forked
from. You can add this by running git remote add up-
stream <URL to repo>.)

5. Visualizing the commit graph
If you work on a project with a lot of branching activity, some-
times it can be difficult to get a handle on all the work that’s
happening and how it’s all related. Various GUI tools allow
you to get a picture of different branches and commits in
what’s called the “commit graph.” For example, here’s a sec-
tion of one of my repositories visualized with the GitLab [3]
commit graph viewer:

(John Anderson CC BY)

If you’re a dedicated command-line user or somebody who
finds switching tools to be distracting, it’s nice to get a similar
view of the commit graph from the command line. That’s where
the --graph argument to the git log command comes in:

(John Anderson CC BY)

implies a local configuration, and sure enough, if you omit
the --global flag, git config will instead update the repos-
itory-specific configuration, which is stored in .git/config.

Options that are set in the .git/config file will override
any setting in the ~/.gitconfig file. So, for example, if you
need to use a different email address for a particular reposi-
tory, you can run git config user.email "also_you@exam-
ple.com". Then, any commits in that repository will use your
other email address. This can be super useful if you work on
open source projects from a work laptop and want them to
show up with a personal email address while still using your
work email for your main Git configuration.

Pretty much anything you can set in ~/.gitconfig, you
can also set in .git/config to make it specific to the given
repository. In any of the following tips, when I mention adding
something to your ~/.gitconfig, just remember you could
also set that option for just one repository by adding it to
.git/config instead.

3. Aliases
Aliases are another thing you can put in your ~/.gitconfig.
These work just like aliases in the command shell—they set
up a new command name that can invoke one or more other
commands, often with a particular set of options or flags.
They’re super useful for longer, more complicated com-
mands you use frequently.

You can define aliases using the git config command—
for example, running git config --global --add alias.
st status will make running git st do the same thing as
running git status—but I find when defining aliases, it’s
frequently easier to just edit the ~/.gitconfig file directly.

If you choose to go this route, you’ll find that the ~/.git-
config file is an INI file [2]. INI is basically a key-value file
format with particular sections. When adding an alias, you’ll
be changing the [alias] section. For example, to define the
same git st alias as above, add this to the file:

[alias]

st = status

(If there’s already an [alias] section, just add the second
line to that existing section.)

4. Aliases to shell commands
Aliases aren’t limited to just running other Git subcom-
mands—you can also define aliases that run other shell
commands. This is a fantastic way to deal with a recurring,
infrequent, and complicated task: Once you’ve figured out
how to do it once, preserve the command under an alias. For
example, I have a few repositories where I’ve forked an open
source project and made some local modifications that don’t
need to be contributed back to the project. I want to keep
up-to-date with ongoing development work in the project but
also maintain my local changes. To accomplish this, I need to

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://gitlab.com/
https://en.wikipedia.org/wiki/INI_file

O L D S C H O O L

72	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

This is the same section of the same repo visualized with the
following command:nklll

gi�t log --graph --pretty=format:'%Cred%h%Creset

-%C(yellow)%d%Creset %s %Cgreen(%cr)

%C(bold blue)<%an>%Creset' --abbrev-commit --date=relative

The --graph option adds the graph to the left side of the
log, --abbrev-commit shortens the commit SHAs [4],
--date=relative expresses the dates in relative terms, and
the --pretty bit handles all the other custom formatting. I
have this aliased to git lg, and it is one of my top 10 most
frequently run commands.

6. A nicer force-push
Sometimes, as hard as you try to avoid it, you’ll find that
you need to run git push --force to overwrite the his-
tory on a remote copy of your repository. You may have
gotten some feedback that caused you to do an interactive
rebase, or you may simply have messed up and want to
hide the evidence.

One of the hazards with force pushes happens when
somebody else has made changes on top of the same
branch in the remote copy of the repository. When you force-
push your rewritten history, those commits will be lost. This
is where git push --force-with-lease comes in—it will
not allow you to force-push if the remote branch has been
updated, which will ensure you don’t throw away someone
else’s work.

7. git add -N
Have you ever used git commit -a to stage and commit all
your outstanding changes in a single move, only to discover
after you’ve pushed your commit that git commit -a ig-
nores newly added files? You can work around this by using
the git add -N (think “notify”) to tell Git about newly added
files you’d like to be included in commits before you actually
commit them for the first time.

8. git add -p
A best practice when using Git is to make sure each commit
consists of only a single logical change—whether that’s a fix
for a bug or a new feature. Sometimes when you’re working,
however, you’ll end up with more than one commit’s worth
of change in your repository. How can you manage to divide
things up so that each commit contains only the appropriate
changes? git add --patch to the rescue!

This flag will cause the git add command to look at all
the changes in your working copy and, for each one, ask if
you’d like to stage it to be committed, skip over it, or defer
the decision (as well as a few other more powerful options
you can see by selecting ? after running the command).
git add -p is a fantastic tool for producing well-struc-
tured commits.

9. git checkout -p
Similar to git add -p, the git checkout command will take
a --patch or -p option, which will cause it to present each
“hunk” of change in your local working copy and allow you
to discard it—basically reverting your local working copy to
what was there before your change.

This is fantastic when, for example, you’ve introduced a
bunch of debug logging statements while chasing down a
bug. After the bug is fixed, you can first use git checkout
-p to remove all the new debug logging, then you git add
-p to add the bug fix. Nothing is more satisfying than put-
ting together a beautiful, well-structured commit!

10. Rebase with command execution
Some projects have a rule that each commit in the repository
must be in a working state—that is, at each commit, it should
be possible to compile the code or the test suite should run
without failure. This is not too difficult when you’re working
on a branch over time, but if you end up needing to rebase
for whatever reason, it can be a little tedious to step through
each rebased commit to make sure you haven’t accidentally
introduced a break.

Fortunately, git rebase has you covered with the -x or
--exec option. git rebase -x <cmd> will run that command
after each commit is applied in the rebase. So, for example,
if you have a project where npm run tests runs your test
suite, git rebase -x npm run tests would run the test
suite after each commit was applied during the rebase. This
allows you to see if the test suite fails at any of the rebased
commits so you can confirm that the test suite is still passing
at each commit.

11. Time-based revision references
Many Git subcommands take a revision argument to spec-
ify what part of the repository to work on. This can be the
SHA1 of a particular commit, a branch name, or even a
symbolic name like HEAD (which refers to the most recent
commit on the currently checked out branch). In addition to
these simple forms, you can also append a specific date or
time to mean “this reference, at this time.”

This becomes very useful when you’re dealing with a
newly introduced bug and find yourself saying, “I know
this worked yesterday! What changed?” Instead of star-
ing at the output of git log trying to figure out what
commit was changed when, you can simply run git diff
HEAD@{yesterday}, and see all the changes that have
happened since then. This also works with longer time
periods (e.g., git diff HEAD@{'2 months ago'}) as
well as exact dates (e.g., git diff HEAD@{'2010-01-01
12:00:00'}).

You can also use these date-based revision arguments
with any Git subcommand that takes a revision argument.
Find full details about which format to use in the man page
for gitrevisions.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 73

12. The all-seeing reflog<!--12-->
Have you ever rebased away a commit, then discovered
there was something in that commit you wanted to keep?
You may have thought that information was lost forever and
would need to be recreated. But if you committed it in your
local working copy, it was added to the reference log (reflog),
and you should still be able to access it.

Running git reflog will show you a list of all the activity for
the current branch in your local working copy and also give
you the SHA1 of each commit. Once you’ve found the com-
mit you rebased away, you can run git checkout <SHA1> to
check out that commit, copy any information you need, and
run git checkout HEAD to return to the most recent commit
in the branch.

13. Cleaning up after yourself
Whoops! It turns out my basic math skills aren’t quite up to
the same level as my Git ones. Git was originally released in
2005, which means it turned 13 this year, not 12. To make up
for the mistake, here’s a 13th tip to bring us up to a baker’s
dozen [5].

If you use a branching-based workflow, overtime on a
long-lived project, unless you’re fastidious about cleaning
up as each branch is merged, eventually you will end up
with a bunch of branches. This can make finding a branch
of interest difficult, and you won’t be able to see the forest
for the... branches, if you will. Even worse, if you have a
number of active branches in play, it can be really tedious to
figure out whether a branch has been merged (and can be
safely deleted) or if it still remains unmerged and should be
left alone. Fortunately, Git has your back here: Just run git
branch --merged to get a list of branches that have been
merged into your current branch, or git branch --merged

<branch-name></branch-name> to find ones that have
been merged into some other branch. By default, this will
list branches in your local working copy, but if you include
--remote or -r into the command, it will also list merged
branches that only exist on the remote.

Important note: if you plan on using the output from git
branch --merged to clean up those merged branches, you
should be aware it will also include the current branch in the
output (because, after all, the current branch is merged to the
current branch!). Make sure you exclude that branch from an-
ything destructive (or if you forgot to, see tip #12 to learn how
the reflog can help you get your branch back, hopefully...)

That’s all folks!
Hopefully at least one of these tips has taught you something
new about Git, a 13-year-old project that’s continuing to in-
novate and add new features. What’s your favorite Git trick?

Links
[1]	 https://git-scm.com/
[2]	� https://en.wikipedia.org/wiki/INI_file
[3]	 �https://gitlab.com/
[4]	� https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
[5]	� https://en.wikipedia.org/wiki/Dozen#Baker's_dozen

Author
John is the VP of Technology for Infinity Interactive, a tech-
nology consultancy and bespoke software development
shop. When he’s not madly trying to keep up with the pace
of change in Javascript development, maintaining Perl mod-
ules, or tweaking his Emacs config, he likes to play around
with new languages like Swift and write about himself in the
third person.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Dozen%23Baker%E2%80%99s_dozen
https://git-scm.com/
https://en.wikipedia.org/wiki/INI_file
https://gitlab.com/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Dozen%23Baker%E2%80%99s_dozen
https://iinteractive.com/

O L D S C H O O L

74	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

GNOME has been my favorite desktop environment
[1] for quite some time. While I always

make it a point to check out other environments from time
to time, there are some aspects of the GNOME desktop that
are hard to live without. While there are many great desktop
environments out there, GNOME [2] feels like home to me.
Here are some of the features I enjoy most about GNOME.

Stability
Having a stable working environment is the most important
aspect of a desktop for me. After all, the feature set of an
environment doesn’t matter at all if it crashes constantly
and you lose work. For me, GNOME is rock-solid. I have
heard of others experiencing crashes and instability, but it
always seems to be due to either the user running GNOME
on unsupported hardware
or due to faulty extensions
(more on that later). On my
end, I run GNOME primarily
on hardware that is known
to be well-supported in Linux
(System76 [3], for example).
I also have a few systems
that are not as well support-
ed (a custom-built desktop
and a Dell Latitude laptop),
and I actually don’t have any
issues there either. For me,
GNOME is rock-solid. I have
compared stability in other well-known desktop environ-
ments, and I had unfortunate results. Nothing comes close
to GNOME when it comes to stability.

Extensions
I really enjoy being able to add additional functionality to my
environment. I don’t necessarily require any extensions, be-

cause I am perfectly fine with stock-GNOME with no exten-
sions whatsoever. However, having the ability to add a few
things here and there, is welcome. GNOME features vari-
ous extensions to do things such as add a weather display
to your panel, and much more. This adds a level of custom-
ization that is not typical of other environments. That said,
proceed with caution. Sometimes extensions are of varying
quality and may lead to stability issues. I find though that
if you only install extensions you absolutely need, and you
make sure they’re kept up to date (and aren’t abandoned
by the developer) you’ll generally be in good shape.

Activities overview
Activities overview is quite possibly the easiest feature to
use in GNOME, and it’s barely detailed enough to justify its

own section in this article.
However, when I use oth-
er desktop environments, I
miss this feature the most.

The thing is, I am very
busy, with multiple projects
going on at any one time,
and dozens of different win-
dows open. To access the
activities overview, I simply
press the Super key. Im-
mediately, my workspace is
“zoomed out” and I see all
of my windows side-by-side.

This is often a faster way to locate a window that is hidden
behind others, and a good way overall to see what exactly
is running on any given workspace.

When using other desktop environments, I will often find
myself pressing the Super key out of habit, only to remember
that I’m not using GNOME at the time. There are ways of
achieving similar behavior in other environments (such as

Happy birthday, GNOME:
8 reasons to love this
Linux desktop

 by Jay LaCroix

On GNOME’s 21st birthday, we highlight some of the features we enjoy the most.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/8/how-navigate-your-gnome-linux-desktop-only-keyboard
https://opensource.com/article/17/8/reasons-i-come-back-gnome
https://opensource.com/article/16/12/open-gaming-news-december-31

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 75

a virtual machine before deploying to another environ-
ment is great. Sure, you can do the exact same thing in
VirtualBox, and VirtualBox is a great piece of software.
However, Boxes is built right into GNOME, and desktop
environments generally don’t offer their own solution for
virtualization.

GNOME Music
While I work, I have difficulty tuning out noise in my envi-
ronment. Therefore, I like to listen to music while I complete
projects and tune out the rest of the world. GNOME’s Music
app is very simplistic and works very well. With most of the
music industry gravitating toward streaming music online,
and many once-popular open source music players [4] be-
coming abandoned projects, it’s nice to see GNOME sup-
port a built-in music player that can play my music collection.
It’s great to listen to my music collection while I work, and it
helps me zone-in to what I am doing.

GNOME Games
When work is done for the day, it’s time to play! There’s
nothing like playing a classic game such as Final Fantasy VI
or Super Metroid after a hard day’s work. The thing is, I am
a huge fan of classic gaming, and I have 22 working gam-
ing consoles and somewhere near 1,000 physical games in
my collection. But I may not always have a moment to hook
up one of my retro-consoles, so GNOME Games allows me
quick-access to emulated versions of my collection. In ad-
dition to that, it also works with Libretro cores as well, so
it seems to me that the developers of this application have
really thought-out what fans of classic gaming like me are
looking for in a frontend for gaming.

Links
[1]	� https://opensource.com/article/18/8/how-navigate-your-

gnome-linux-desktop-only-keyboard
[2]	� https://opensource.com/article/17/8/reasons-i-come-back-

gnome�
[3]	� https://opensource.com/article/16/12/open-gaming-news-

december-31
[4]	� https://opensource.com/article/18/6/open-source-music-

players

Author
Jay LaCroix is a technologist from Michigan, with a focus on
Linux and open-source software. Using Linux since 2002,
Jay has been a die-hard fan ever since. He is currently a Se-
nior Solutions Architect and freelance consultant and enjoys
training and empowering others to use Linux and to make
the most of this amazing software. In his free time, Jay is an
author of books such as Linux Mint Essentials, Mastering
Linux Network Administration and most recently, Mastering
Ubuntu Server. In addition, Jay creates instructional Linux
videos at www.learnlinux.tv.

installing and tweaking Compiz), but in GNOME this feature
is built-in.

Dynamic workspaces
While working, I am not sure up-front how many workspaces
I will need. Sometimes I can be working on three projects at
a time, or as many as ten. With most desktop environments,
I can access the settings screen and add or remove work-
spaces as needed. But with GNOME, I have exactly as many
workspaces as I need at any given time. Every time I open
applications on a workspace, I am given another blank one
that I can switch to in order to start another project. Typically,
I keep all windows related to a specific project on their own
workspace, so it makes it very easy to locate my workflow
for a given project.

Other desktop environments have really good implemen-
tations of the concept of workspaces, but GNOME’s imple-
mentation works best for me.

Simplicity
Another thing I love about GNOME is that it’s simple and
straight to the point. By default, there is only one panel, and
it’s at the top of the screen. This panel shows you a small
amount of information, such as the date, time, and bat-
tery usage. GNOME 2 had two panels, so seeing GNOME
stripped down to a single panel is welcome and saves room
on the screen. Most of the things you don’t need to see all
the time are hidden within the Activities overview, leaving
you with the maximum amount of screen space for the ap-
plication(s) you are working on. GNOME just stays out of
the way and lets you focus on getting your work done, and
stays away from fancy widgets and desktop gadgets that just
aren’t necessary.

In addition, GNOME has really great support for keyboard
shortcuts. Most of GNOME’s features I can access without
needing to touch my mouse, such as SUPER+Page Up and
Super Page Down to switch workspaces, Super+Up arrow to
maximize windows, etc. In addition, I am able to easily create
my own keyboard shortcuts for all of my favorite applications.

GNOME Boxes
GNOME’s Boxes app is an underrated gem. This utility
makes it very easy to spin up a virtual machine, which is a
godsend among developers and those that like to test con-
figurations on multiple distributions and platforms. With Box-
es, you can spin up a virtual machine at any time, and it will
even automate the installation process for you. For example,
if you want a new Ubuntu VM, you simply choose Ubuntu as
your desired platform, fill out your username and any related
information, and you will have a new Ubuntu VM in a few
minutes. When you’re done with it, you can power it down
or trash it.

For me, I do a lot of DevOps-style work as well as sys-
tem administration. Being able to test a configuration on

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/6/open-source-music-players
https://opensource.com/article/18/8/how-navigate-your-gnome-linux-desktop-only-keyboard
https://opensource.com/article/18/8/how-navigate-your-gnome-linux-desktop-only-keyboard
https://opensource.com/article/17/8/reasons-i-come-back-gnome
https://opensource.com/article/17/8/reasons-i-come-back-gnome
https://opensource.com/article/16/12/open-gaming-news-december-31
https://opensource.com/article/16/12/open-gaming-news-december-31
https://opensource.com/article/18/6/open-source-music-players
https://opensource.com/article/18/6/open-source-music-players
http://www.learnlinux.tv

O L D S C H O O L

76	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

Last year, I missed the opportunity to write
about the 10th anniversary of

GPLv3 [1], the third version of the GNU General Public Li-
cense. GPLv3 was officially released by the Free Software
Foundation (FSF) on June 29, 2007—better known in tech-
nology history as the date Apple launched the iPhone. Now,
one year later, I feel some
retrospection on GPLv3 is
due. For me, much of what
is interesting about GPLv3
goes back somewhat further
than 11 years, to the public
drafting process in which I
was an active participant.

In 2005, following near-
ly a decade of enthusiastic
self-immersion in free soft-
ware, yet having had little
open source legal experi-
ence to speak of, I was hired by Eben Moglen to join the
Software Freedom Law Center as counsel. SFLC was then
outside counsel to the FSF, and my role was conceived as
focusing on the incipient public phase of the GPLv3 drafting
process. This opportunity rescued me from a previous ca-
reer turn that I had found rather dissatisfying. Free and open
source software (FOSS) legal matters would come to be my
new specialty, one that I found fascinating, gratifying, and
intellectually rewarding. My work at SFLC, and particularly
the trial by fire that was my work on GPLv3, served as my
on-the-job training.

GPLv3 must be understood as the product of an earlier
era of FOSS, the contours of which may be difficult for some
to imagine today. By the beginning of the public drafting pro-
cess in 2006, Linux and open source were no longer prac-
tically synonymous, as they might have been for casual ob-
servers several years earlier, but the connection was much

closer than it is now.
Reflecting the profound

impact that Linux was al-
ready having on the tech-
nology industry, everyone
assumed GPL version 2 was
the dominant open source
licensing model. We were
seeing the final shakeout of a
Cambrian explosion of open
source (and pseudo-open
source) business models. A
frothy business-fueled hype

surrounded open source (for me most memorably typified
by the Open Source Business Conference) that bears little
resemblance to the present-day embrace of open source
development by the software engineering profession. Mic-
rosoft, with its expanding patent portfolio and its competitive
opposition to Linux, was commonly seen in the FOSS com-
munity as an existential threat, and the SCO litigation [2] had
created a cloud of legal risk around Linux and the GPL that
had not quite dissipated.

That environment necessarily made the drafting of
GPLv3 a high-stakes affair, unprecedented in free software

An insider’s look at drafting
the GPLv3 license

 by Richard Fontana

On the 11th anniversary of the GPLv3 license, learn about its
lasting contributions to free and open source software.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/SCO%E2%80%93Linux_disputes

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 77

I have viewed it somewhat differently: Largely because of
its complexity and baroqueness, GPLv3 was a lost oppor-
tunity to create a strong copyleft license that would appeal
very broadly to modern individual software authors and
corporate licensors. I believe individual developers today
tend to prefer short, simple, easy to understand, minimal-
ist licenses, the most obvious example of which is the MIT
License [5].

Some corporate decisionmakers around open source
license selection may naturally share that view, while
others may associate some parts of GPLv3, such as the
patent provisions or the anti-lockdown requirements, as
too risky or incompatible with their business models. The
great irony is that the characteristics of GPLv3 that fail
to attract these groups are there in part because of con-
scious attempts to make the license appeal to these same
sorts of interests.

How did GPLv3 come to be so baroque? As I have said,
GPLv3 was the product of an earlier time, in which FOSS
licenses were viewed as the primary instruments of project
governance. (Today, we tend to associate governance with
other kinds of legal or quasi-legal tools, such as structur-
ing of nonprofit organizations, rules around project decision
making, codes of conduct, and contributor agreements.)

GPLv3, in its drafting, was the high point of an optimis-
tic view of FOSS licenses as ambitious means of private
regulation. This was already true of GPLv2, but GPLv3
took things further by addressing in detail a number of
new policy problems—software patents, anti-circumven-
tion laws, device lockdown. That was bound to make the
license longer and more complex than GPLv2, as the FSF
and SFLC noted apologetically in the first GPLv3 rationale
document [6].

But a number of other factors at play in the drafting of
GPLv3 unintentionally caused the complexity of the license
to grow. Lawyers representing vendors’ and commercial us-
ers’ interests provided useful suggestions for improvements
from a legal and commercial perspective, but these often
took the form of making simply worded provisions more ver-
bose, arguably without net increases in clarity. Responses to
feedback from the technical community, typically identifying
loopholes in license provisions, had a similar effect.

The GPLv3 drafters also famously got entangled in a
short-term political crisis—the controversial Microsoft/No-
vell deal [7] of 2006—resulting in the permanent addition of
new and unusual conditions in the patent section of the li-
cense, which arguably served little purpose after 2007 other
than to make license compliance harder for conscientious
patent-holding vendors. Of course, some of the complexity
in GPLv3 was simply the product of well-intended attempts
to make compliance easier, especially for community proj-
ect developers, or to codify FSF interpretive practice. Fi-
nally, one can take issue with the style of language used
in GPLv3, much of which had a quality of playful parody or

history. Lawyers at major technology companies and top
law firms scrambled for influence over the license, con-
vinced that GPLv3 was bound to take over and thoroughly
reshape open source and all its massive associated busi-
ness investment.

A similar mindset existed within the technical community; it
can be detected in the fears expressed in the final paragraph
of the Linux kernel developers’ momentous September 2006
denunciation [3] of GPLv3. Those of us close to the FSF
knew a little better, but I think we assumed the new license
would be either an overwhelming success or a resounding
failure—where “success” meant something approximat-
ing an upgrade of the existing GPLv2 project ecosystem to
GPLv3, though perhaps without the kernel. The actual out-
come was something in the middle.

I have no confidence in attempts to measure open source
license adoption, which have in recent years typically been
used to demonstrate a loss of competitive advantage for
copyleft licensing. My own experience, which is admittedly
distorted by proximity to Linux and my work at Red Hat, sug-
gests that GPLv3 has enjoyed moderate popularity as a li-
cense choice for projects launched since 2007, though most
GPLv2 projects that existed before 2007, along with their
post-2007 offshoots, remained on the old license. (GPLv3’s
sibling licenses LGPLv3 and AGPLv3 never gained com-
parable popularity.) Most of the existing GPLv2 projects
(with a few notable exceptions like the kernel and Busybox)
were licensed as “GPLv2 or any later version.” The techni-
cal community decided early on that “GPLv2 or later” was a
politically neutral license choice that embraced both GPLv2
and GPLv3; this goes some way to explain why adoption of
GPLv3 was somewhat gradual and limited, especially within
the Linux community.

During the GPLv3 drafting process, some expressed con-
cerns about a “balkanized” Linux ecosystem, whether be-
cause of the overhead of users having to understand two
different, strong copyleft licenses or because of GPLv2/
GPLv3 incompatibility. These fears turned out to be entirely
unfounded. Within mainstream server and workstation Linux
stacks, the two licenses have peacefully coexisted for a de-
cade now. This is partly because such stacks are made up of
separate units of strong copyleft scope (see my discussion
of related issues in the container setting [4]). As for incom-
patibility inside units of strong copyleft scope, here, too, the
prevalence of “GPLv2 or later” was seen by the technical
community as neatly resolving the theoretical problem, de-
spite the fact that nominal license upgrading of GPLv2-or-
later to GPLv3 hardly ever occurred.

I have alluded to the handwringing that some of us FOSS
license geeks have brought to the topic of supposed copyleft
decline. GPLv3 has taken its share of abuse from critics as
far back as the beginning of the public drafting process, and
some, predictably, have drawn a link between GPLv3 in par-
ticular and GPL or copyleft disfavor in general.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.org/licenses/MIT
http://gplv3.fsf.org/gpl-rationale-2006-01-16.html
https://en.wikipedia.org/wiki/Novell%23Agreement_with_Microsoft
https://lwn.net/Articles/200422/
https://opensource.com/article/18/1/containers-gpl-and-copyleft

O L D S C H O O L

78	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

mockery of conventional software license legalese; a sim-
pler, straightforward form of phrasing would in many cases
have been an improvement.

The complexity of GPLv3 and the movement towards
preferring brevity and simplicity in license drafting and
unambitious license policy objectives meant that the sub-
stantive text of GPLv3 would have little direct influence
on later FOSS legal drafting. But, as I noted with surprise
and delight [8] back in 2012, MPL 2.0 adapted two parts of
GPLv3: the 30-day cure and 60-day repose language from
the GPLv3 termination provision, and the assurance that
downstream upgrading to a later license version adds no
new obligations on upstream licensors.

The GPLv3 cure language has come to have a ma-
jor impact, particularly over the past year. Following the
Software Freedom Conservancy’s promulgation, with the
FSF’s support, of the Principles of Community-Oriented
GPL Enforcement [9], which calls for extending GPLv3
cure opportunities to GPLv2 violations, the Linux Foun-
dation Technical Advisory Board published a statement
[10], endorsed by over a hundred Linux kernel develop-
ers, which incorporates verbatim the cure language of
GPLv3. This in turn was followed by a Red Hat-led se-
ries of corporate commitments [11] to extend the GPLv3
cure provisions to GPLv2 and LGPLv2.x noncompliance,
a campaign to get individual open source developers to
extend the same commitment, and an announcement by
Red Hat that henceforth GPLv2 and LGPLv2.x projects it
leads will use the commitment language directly in project
repositories. I discussed these developments in a recent
blog post [12].

One lasting contribution of GPLv3 concerns changed ex-
pectations for how revisions of widely-used FOSS licenses

are done. It is no longer acceptable for such licenses to be
revised entirely in private, without opportunity for comment
from the community and without efforts to consult key stake-
holders. The drafting of MPL 2.0 and, more recently, EPL 2.0
reflects this new norm.

Links
[1]	� https://www.gnu.org/licenses/gpl-3.0.en.html
[2]	� https://en.wikipedia.org/wiki/SCO%E2%80%93Linux_

disputes
[3]	� https://lwn.net/Articles/200422/
[4]	� https://opensource.com/article/18/1/containers-gpl-and-

copyleft
[5]	� https://opensource.org/licenses/MIT
[6]	� http://gplv3.fsf.org/gpl-rationale-2006-01-16.html
[7]	� https://en.wikipedia.org/wiki/Novell#Agreement_with_

Microsoft
[8]	 �https://opensource.com/law/12/1/the-new-mpl
[9]	� https://sfconservancy.org/copyleft-compliance/principles.

html
[10]	 �https://www.kernel.org/doc/html/v4.16/process/kernel-

enforcement-statement.html
[11]	 �https://www.redhat.com/en/about/press-releases/

technology-industry-leaders-join-forces-increase-
predictability-open-source-licensing

[12]	� https://www.redhat.com/en/blog/gpl-cooperation-
commitment-and-red-hat-projects?source=author&te
rm=26851

Author
Richard is Senior Commercial Counsel on the Products and
Technologies team in Red Hat’s legal department. Most of
his work focuses on open source-related legal issues.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/law/12/1/the-new-mpl
https://sfconservancy.org/copyleft-compliance/principles.html
https://www.kernel.org/doc/html/v4.16/process/kernel-enforcement-statement.html
https://www.redhat.com/en/about/press-releases/technology-industry-leaders-join-forces-increase-predictability-open-source-licensing
https://www.redhat.com/en/blog/gpl-cooperation-commitment-and-red-hat-projects?source=author&term=26851
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/wiki/SCO%E2%80%93Linux_disputes
https://en.wikipedia.org/wiki/SCO%E2%80%93Linux_disputes
https://lwn.net/Articles/200422/
https://opensource.com/article/18/1/containers-gpl-and-copyleft
https://opensource.com/article/18/1/containers-gpl-and-copyleft
https://opensource.org/licenses/MIT
http://gplv3.fsf.org/gpl-rationale-2006-01-16.html
https://en.wikipedia.org/wiki/Novell%23Agreement_with_Microsoft
https://en.wikipedia.org/wiki/Novell%23Agreement_with_Microsoft
https://opensource.com/law/12/1/the-new-mpl
https://sfconservancy.org/copyleft-compliance/principles.html
https://sfconservancy.org/copyleft-compliance/principles.html
https://www.kernel.org/doc/html/v4.16/process/kernel-enforcement-statement.html
https://www.kernel.org/doc/html/v4.16/process/kernel-enforcement-statement.html
https://www.redhat.com/en/about/press-releases/technology-industry-leaders-join-forces-increase-predictability-open-source-licensing
https://www.redhat.com/en/about/press-releases/technology-industry-leaders-join-forces-increase-predictability-open-source-licensing
https://www.redhat.com/en/about/press-releases/technology-industry-leaders-join-forces-increase-predictability-open-source-licensing
https://www.redhat.com/en/blog/gpl-cooperation-commitment-and-red-hat-projects?source=author&term=26851
https://www.redhat.com/en/blog/gpl-cooperation-commitment-and-red-hat-projects?source=author&term=26851
https://www.redhat.com/en/blog/gpl-cooperation-commitment-and-red-hat-projects?source=author&term=26851

O L D S C H O O L
..........

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 79

In 1984, Rob Pike and Brian W. Kernighan published an
article called “Program Design in the Unix

Environment [1]” in the AT&T Bell Laboratories Technical
Journal, in which they argued the Unix philosophy, using the
example of BSD’s cat -v implementation. In a nutshell that
philosophy is: Build small, focused programs—in whatever
language—that do only one thing but do this thing well, com-
municate via stdin/stdout, and are connected through pipes.

Sound familiar?
Yeah, I thought so. That’s pretty much the definition of mi-

croservices [2] offered by James Lewis and Martin Fowler:

In short, the microservice architectural style is
an approach to developing a single application
as a suite of small services, each running in its
own process and communicating with lightweight
mechanisms, often an HTTP resource API.

While one *nix program or one microservice may be very
limited or not even very interesting on its own, it’s the combi-
nation of such independently working units that reveals their
true benefit and, therefore, their power.

*nix vs. microservices
The following table compares programs (such as cat or lsof)
in a *nix environment against programs in a microservices
environment.

*nix Microservices

Unit of execution program using
stdin/stdout

service with HTTP
or gRPC API

Data flow Pipes ?
Configuration &
parameterization

Command-line
arguments, envi-
ronment variables,
config files

JSON/YAML docs

Discovery Package manager,
man, make

DNS, environment
variables, OpenAPI

Let’s explore each line in slightly greater detail.

Unit of execution
The unit of execution in *nix (such as Linux) is an execut-
able file (binary or interpreted script) that, ideally, reads in-
put from stdin and writes output to stdout. A microservices
setup deals with a service that exposes one or more com-
munication interfaces, such as HTTP or gRPC APIs. In both
cases, you’ll find stateless examples (essentially a purely
functional behavior) and stateful examples, where, in ad-
dition to the input, some internal (persisted) state decides
what happens.

Data flow
Traditionally, *nix programs could communicate via pipes. In
other words, thanks to Doug McIlroy [3], you don’t need to
create temporary files to pass around and each can process
virtually endless streams of data between processes. To my
knowledge, there is nothing comparable to a pipe standard-
ized in microservices, besides my little Apache Kafka-based
experiment from 2017 [4].

Configuration and parameterization
How do you configure a program or service—either on a
permanent or a by-call basis? Well, with *nix programs
you essentially have three options: command-line argu-
ments, environment variables, or full-blown config files.
In microservices, you typically deal with YAML (or even
worse, JSON) documents, defining the layout and config-

Revisiting the
Unix philosophy in 2018

 by Michael Hausenblas

The old strategy of building small, focused applications is new
again in the modern microservices environment.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://harmful.cat-v.org/cat-v/
https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://speakerdeck.com/mhausenblas/distributed-named-pipes-and-other-inter-services-communication

O L D S C H O O L

80	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

uration of a single microservice as well as dependencies
and communication, storage, and runtime settings. Ex-
amples include Kubernetes resource definitions [5], No-
mad job specifications [6], or Docker Compose [7] files.
These may or may not be parameterized; that is, either
you have some templating language, such as Helm [8] in
Kubernetes, or you find yourself doing an awful lot of sed
-i commands.

Discovery
How do you know what programs or services are available
and how they are supposed to be used? Well, in *nix, you
typically have a package manager as well as good old man;
between them, they should be able to answer all the ques-
tions you might have. In a microservices setup, there’s a
bit more automation in finding a service. In addition to be-
spoke approaches like Airbnb’s SmartStack [9] or Netflix’s
Eureka [10], there usually are environment variable-based
or DNS-based approaches [11] that allow you to discov-
er services dynamically. Equally important, OpenAPI [12]
provides a de-facto standard for HTTP API documentation
and design, and gRPC [13] does the same for more tightly
coupled high-performance cases. Last but not least, take
developer experience (DX) into account, starting with writ-
ing good Makefiles [14] and ending with writing your docs
with (or in?) style [15].

Pros and cons
Both *nix and microservices offer a number of challenges
and opportunities

Composability
It’s hard to design something that has a clear, sharp fo-
cus and can also play well with others. It’s even harder
to get it right across different versions and to introduce
respective error case handling capabilities. In microser-
vices, this could mean retry logic and timeouts—maybe
it’s a better option to outsource these features into a ser-
vice mesh? It’s hard, but if you get it right, its reusability
can be enormous.

Observability
In a monolith (in 2018) or a big program that tries to do it all
(in 1984), it’s rather straightforward to find the culprit when
things go south. But, in a

yes | tr \\n x | head -c 450m | grep n

or a request path in a microservices setup that involves,
say, 20 services, how do you even start to figure out which
one is behaving badly? Luckily we have standards, notably
OpenCensus [16] and OpenTracing [17]. Observability still
might be the biggest single blocker if you are looking to
move to microservices.

Global state
While it may not be such a big issue for *nix programs, in mi-
croservices, global state remains something of a discussion.
Namely, how to make sure the local (persistent) state is man-
aged effectively and how to make the global state consistent
with as little effort as possible.

Wrapping up
In the end, the question remains: Are you using the right tool
for a given task? That is, in the same way a specialized *nix
program implementing a range of functions might be the bet-
ter choice for certain use cases or phases, it might be that a
monolith is the best option [18] for your organization or work-
load. Regardless, I hope this article helps you see the many,
strong parallels between the Unix philosophy and microser-
vices—maybe we can learn something from the former to
benefit the latter.

Links
[1]	 �http://harmful.cat-v.org/cat-v/
[2]	� https://martinfowler.com/articles/microservices.html
[3]	� https://en.wikipedia.org/wiki/Douglas_McIlroy
[4]	� https://speakerdeck.com/mhausenblas/distributed-named-

pipes-and-other-inter-services-communication
[5]	� http://kubernetesbyexample.com/
[6]	� https://www.nomadproject.io/docs/job-specification/index.

html
[7]	 �https://docs.docker.com/compose/overview/
[8]	� https://helm.sh/
[9]	� https://github.com/airbnb/smartstack-cookbook
[10]	� https://github.com/Netflix/eureka
[11]	� https://kubernetes.io/docs/concepts/services-networking/

service/#discovering-services
[12]	� https://www.openapis.org/
[13]	� https://grpc.io/
[14]	� https://suva.sh/posts/well-documented-makefiles/
[15]	� https://www.linux.com/news/improve-your-writing-gnu-

style-checkers
[16]	� https://opencensus.io/
[17]	� https://opentracing.io/
[18]	 �https://robertnorthard.com/devops-days-well-architected-

monoliths-are-okay/

Author
Michael is a Developer Advocate for Kubernetes and Open-
Shift at Red Hat where he helps appops to build and operate
apps. His background is in large-scale data processing and
container orchestration and he’s experienced in advoca-
cy and standardization at W3C and IETF. Before Red Hat,
Michael worked at Mesosphere, MapR and in two research
institutions in Ireland and Austria. He contributes to open
source software incl. Kubernetes, speaks at conferences
and user groups, and shares good practices around cloud
native topics via blog posts and books.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://kubernetesbyexample.com/
https://www.nomadproject.io/docs/job-specification/index.html
https://docs.docker.com/compose/overview/
https://helm.sh/
https://github.com/airbnb/smartstack-cookbook
https://github.com/Netflix/eureka
https://kubernetes.io/docs/concepts/services-networking/service/%23discovering-services
https://www.openapis.org/
https://grpc.io/
https://suva.sh/posts/well-documented-makefiles/
https://www.linux.com/news/improve-your-writing-gnu-style-checkers
https://opencensus.io/
https://opentracing.io/
https://robertnorthard.com/devops-days-well-architected-monoliths-are-okay/
http://harmful.cat-v.org/cat-v/
https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Douglas_McIlroy
https://speakerdeck.com/mhausenblas/distributed-named-pipes-and-other-inter-services-communication
https://speakerdeck.com/mhausenblas/distributed-named-pipes-and-other-inter-services-communication
http://kubernetesbyexample.com/
https://www.nomadproject.io/docs/job-specification/index.html
https://www.nomadproject.io/docs/job-specification/index.html
https://docs.docker.com/compose/overview/
https://helm.sh/
https://github.com/airbnb/smartstack-cookbook
https://github.com/Netflix/eureka
https://kubernetes.io/docs/concepts/services-networking/service/%23discovering-services
https://kubernetes.io/docs/concepts/services-networking/service/%23discovering-services
https://www.openapis.org/
https://grpc.io/
https://suva.sh/posts/well-documented-makefiles/
https://www.linux.com/news/improve-your-writing-gnu-style-checkers
https://www.linux.com/news/improve-your-writing-gnu-style-checkers
https://opencensus.io/
https://opentracing.io/
https://robertnorthard.com/devops-days-well-architected-monoliths-are-okay/
https://robertnorthard.com/devops-days-well-architected-monoliths-are-okay/

O L D S C H O O L
..........

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 81

Patrick Volkerding didn’t set out
to create a

Linux distribution. He just wanted to simplify the process of
installing and configuring Softlanding Linux System [1]. But
when SLS didn’t pick up his improvements, Volkerding de-
cided to release his work as Slackware [2]. On July 17, 1993,
he announced version 1.0. A quarter century and 30-plus
versions later, Slackware
is the oldest actively main-
tained Linux distribution.

For many early Linux us-
ers, Slackware was their
introduction. One user told
me her first Linux install
was Slackware—and she
had to use a hex editor to
fix the partition tables so
that Slackware would in-
stall. Support for her hard-
ware was added in a later
release. Another got his
start building the data center that would power one of the
first internet-enabled real estate sites. In the mid-1990s,
Slackware was one of the easiest distributions to get and
didn’t require a lot of effort to get IP masquerading to work
correctly. A third person mentioned going to sleep while a
kernel compile job ran, only to find out it had failed when
he woke up.

All of these anecdotes would suggest a hard-to-use op-
erating system. But Slackware fans don’t see it that way.
The project’s website says the two top priorities are “ease
of use and stability.” For Slackware, “ease of use” means
simplicity. Slackware does not include a graphical installer.
Its package manager does not perform any dependency
resolution. This can be jarring for new users, particularly
within the last few years, but it also enables a deeper un-
derstanding of the system.

The different take on ease of use isn’t the only thing unique
about Slackware. It also does not have a public bug tracker,
code repository, or well-defined method of community contri-
bution. Volkerding and a small team of contributors maintain
the tree in a rolling release called “-current” and publish a re-
lease when it meets the feature and stability goals they’ve set.

As the oldest distro around, Slackware has been very
influential. The earliest re-
leases of SUSE Linux [3]
were based on Slackware,
and distributions such as
Arch Linux [4] can be seen
as philosophical heirs to
Slackware. And while its
popularity may have fallen
over the years—the slightly
younger Debian [5] has 10x
the number of subscribers
on its sub-Reddit, for ex-
ample—it remains an active
project with a loyal fan base.

So happy 25th birthday, Slackware, and here’s to 25 more!

Links
[1]	� https://en.wikipedia.org/wiki/Softlanding_Linux_System
[2]	� http://www.slackware.com/
[3]	 https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise�
[4]	� https://www.archlinux.org/
[5]	� https://www.debian.org/

Author
Ben Cotton is a meteorologist by training, but weather makes
a great hobby. Ben works as a the Fedora Program Manag-
er at Red Hat. He co-founded a local open source meetup
group, and is a member of the Open Source Initiative and a
supporter of Software Freedom Conservancy. Find him on
Twitter (@FunnelFiasco) or at FunnelFiasco.com.

The oldest, active Linux distro,
Slackware, turns 25

 by Ben Cotton

Slackware boasts a unique history and a loyal user base.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Softlanding_Linux_System
http://www.slackware.com/
https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise
https://www.archlinux.org/
https://www.debian.org/
https://en.wikipedia.org/wiki/Softlanding_Linux_System
http://www.slackware.com/
https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise
https://www.archlinux.org/
https://www.debian.org/
https://twitter.com/funnelfiasco
http://www.funnelfiasco.com

F u t u r e
.

82	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

There are a lot of reasons to go to tech
conferences [1], and

even more of a reason to go to a conference focused spe-
cifically on your chosen programming language. My favorite
is Python [2].

Rather than rehash all the various reasons why confer-
ences are great and you should attend, I’ll go right into which
Python conferences you might want to show up to in 2019.

PyTennessee
• �Conference homepage [3]
• �Twitter [4]
• �Dates: February 9-10, 2019
• �Location: Nashville, Tennessee
• �Registration: Open; $100 individual, $200 corporate

Started in 2014, PyTennessee is an annual regional confer-
ence held every February in Tennessee. It features much
of what you’d expect from a conference: keynotes, regular
speakers, tutorials, and some company exhibitions.

The talks cover topics from software development to data
science and machine learning. Often, speakers will also talk
about developer-adjacent topics, such as developing emo-
tional intelligence as developers and better ways to build en-
gineering communities. There’s a Game Night/After Party on
the Saturday and the conference provides some program-
ming education through its Young Coders program.

This conference is a nonprofit event facilitated by TechFed
Nashville, an organization with the mission to support and
grow grassroots tech talent in Tennessee through education-
al events and groups.

PyCascades
• �Conference homepage [5]
• �Twitter [6]
• YouTube [7]
• �Dates: February 23-24, 2019
• �Location: Seattle, Washington
• �Registration: Open; $82.57 student, $110.10 individual,

$220.20 corporate
PyCascades debuted this year in Vancouver, BC, Canada,
as a regional PyCon in the Pacific Northwest. Its organizing
team includes members from Python user groups in Van-
couver, Seattle, and Portland. I’m quite partial to this event,
as I was able to give the talk that spurred my first posts to
Opensource.com [8]!

Last year’s conference was fairly small, with final sales
peaking just under 400 people. The 2019 iteration in Seattle
is set for a larger guest list, but the general feel of a small
regional conference is still the goal.

Like PyTennessee, the talks encompass a variety of skill
levels (beginner to advanced) as well as technical topics

Top 8 Python conferences
to attend in 2019

 by Nicholas Hunt-Walker

Resolve to expand your Python knowledge and network at these events.

https://opensource.com/life/16/2/attending-technical-conferences-whats-big-deal
https://www.python.org/
https://www.pytennessee.org/
https://twitter.com/PyTennessee
https://2019.pycascades.com/
https://twitter.com/pycascades
https://www.youtube.com/channel/UCtWI06j1EADmEOGj2iJhSyA
https://opensource.com/users/nhuntwalker

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 83

(web dev, device dev, tech education, data science, and ma-
chine learning). Last year’s conference also featured several
talks on tech-adjacent topics like understanding racial bias in
your software and navigating unconscious bias in your per-
sonal and professional interactions.

One of the big differences at PyCascades is that there is
no dedicated Q&A portion for any talk (at least there wasn’t
last year). There are instead breaks after each talk where
speakers can engage directly with people who have ques-
tions or comments while the next speakers prep to begin
their talks.

The talks occur in a single track, eliminating the need to
make tough decisions about which to attend and which to
leave behind. Last year, it finished with a day of sprints,
where participants gathered together to collaborate on
and push changes to various Python-focused open source
projects.

PyCon US
• �Conference homepage [9]
• �Twitter [10]
• �YouTube (2018) [11]
• �Dates: May 1-9, 2019
• �Location: Cleveland, Ohio
• �Registration: Open; $125 student, $400 individual, $700

corporate, $150 per tutorial
PyCon is the big Python conference that brings Pythonis-
tas together from around the US and often from around the
world. While the regional conferences may last two or three
days, PyCon exceeds a week, with a variety of events and
workshops—talks are only a small bit.

Prior to the three main days of talks and keynotes that
typically define a conference, PyCon features two days of tu-
torials on a variety of Python projects that often are given by
the creators or maintainers of the projects. During the main
conference days, there are dozens of talks organized by top-
ic, a massive exposition hall for conference sponsors and
vendors often looking to hire or educate about their prod-
ucts and services, an academic poster session, a dedicated
job fair, and a benefit auction. The final four days are full of
sprints on various projects that are looking to attract devel-
opers of all experience levels.

All in all, PyCon is a great place to learn about new prod-
ucts and techniques, teach others from your own experi-
ence, and meet dozens of new people at all experience lev-
els throughout the world of Python development.

PyOhio
• Conference homepage [12]
• �Twitter [13]
• YouTube [14]
• �Dates: July 27-28, 2019
• �Location: Columbus, Ohio
• �Registration: Open; Free!

PyOhio is unique in one sense because it’s the only event
on this list that’s completely free. The organizers ask for do-
nations, but there’s no barrier to entry if you can’t manage
one. It’s also special in that, while they do have corporate
sponsors, there are no exhibitors.

PyOhio is all about the talks and sprints. The evening be-
fore the conference’s two days of talks and tutorials, there’s
an opening reception with sprints, with more sprints at the
end of the first day. The talks are the same variety of Py-
thon-focused presentations that we’ve come to know and
love, featuring speakers from all over.

On its own, it’s a great conference to attend. It’s even bet-
ter if your budget for conference attendances is tight but you
still want to be part of the community.

DjangoCon
• �Conference homepage [15]
• �Twitter [16]
• YouTube [17]
• �Dates: September 22-27, 2019
• �Location: TBD
• �Registration: Not open yet; 2018’s fees were: $295 dis-

counted, $595 individual, $795 corporate, $195 per tutorial
While the name may imply a strong focus on the Python
web framework Django, DjangoCon also includes a fair bit of
content that appeals to all Python developers. It is still very
strong on Django and features tutorials, talks, and sprints for
the framework and its related packages and practices.

The first day is filled with 3.5-hour tutorials at various lev-
els. The next three days feature keynotes and two talk tracks
about various topics in Django and Python development.

If you’re on the job hunt, this is a great time to meet com-
panies with interest in Django enthusiasts. If you’re hiring,
you can find Django users at all levels everywhere you turn.

The last two days feature sprints, where you can work
alongside many project maintainers and team leaders in the
Django community.

PyGotham
• Conference homepage [18]
• �Twitter [19]
• YouTube (2018) [20]
• �Dates (likely): Early October 2019
• �Location: New York City
• �Registration: Not open yet; 2018’s fees were: $75 academ-

ic, $200 individual, $300 corporate
Founded in 2011 and based in New York City, PyGotham
features two full days of talks and social events for Python
enthusiasts of all types. This conference is focused heavily
on the talks, with no sprints or exhibitors to speak of. There
are tutorials, but they’re specifically for young coders (age
10 and older).

The talk topics range across all types of Python topics, from
web dev, to natural language processing, to testing, to Python

https://us.pycon.org
https://twitter.com/pycon
https://www.youtube.com/channel/UCsX05-2sVSH7Nx3zuk3NYuQ
https://www.pyohio.org
https://twitter.com/pyohio
https://www.youtube.com/channel/UCYqdrfvhGxNW3vXebypqXoQ
https://djangocon.us
https://twitter.com/djangocon
https://www.youtube.com/channel/UC0yY6a79pPY9J0ShIHRf6yw
https://pygotham.org
https://twitter.com/PyGotham
https://www.youtube.com/channel/UCTse88P9vOnsMaovjNl1YBA

F u t u r e

84	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

.

fundamentals. If you attend PyGotham, you’ll be getting a great
dose of useful tricks and great lessons about the language.

North Bay Python
• �Conference homepage [21]
• Twitter [22]
• YouTube [23]
• �Dates (likely): Early November 2019
• �Location: Petaluma, California
• �Registration: Not open yet; 2018’s fees were: $50 individ-

ual, $100 individual supporter, $200 corporate, $500 indi-
vidual sponsor

North Bay Python is a two-day, single-track, nonprofit Python
conference held in downtown Petaluma, California. Its goal
is to appeal to every type of Python user, from students to
field experts. Like PyCascades, it’s a fairly small conference;
2018’s event hosted about 400 attendees.

The conference features over 20 sessions from experi-
enced presenters hailing from across the US and other coun-
tries speaking on a wide mix of topics. Sessions include up-
dates from leading Python community members on the state
of major projects, technical explorations of how Python and
Python-based systems work in practice, and thought-provok-
ing explorations and lessons about people-focused, tech-ad-
jacent topics like team development, diversity and inclusion,
and communication skills.

PyData
• �Conference homepage [24]
• �Twitter [25]
• �YouTube [26]
• �Dates: Various [27] (next one is Jan. 9-11, 2019)
• �Location: Various (next one is in Miami)
• �Registration: Open (Miami); $85 student, $235 individual
While the other conferences on this list range across various
areas of Python software development, PyData is specifi-
cally geared toward users and developers of data analysis
tools. The global PyData network promotes discussions of
best practices, new approaches, and emerging technologies
for data management, processing, analytics, and visualiza-
tion. In its focus on all things data, this conference also in-
cludes other languages big in analytics, such as R and Julia.

The upcoming event in Miami has a specific call for pre-
sentations addressing some of the concerns and strengths
of South Florida, including climate and weather modeling,
ecological data, civic data science, digital humanities, and
biomedical data.

See our list of 40 top Linux and open source conferences
in 2019 [28] for more upcoming events to attend. Are you
proposing a talk for a 2019 event? Maybe the topic would
also make a great article for Opensource.com. Send your
story idea to us at open@opensource.com.

Links
[1]	� https://opensource.com/life/16/2/attending-technical-

conferences-whats-big-deal
[2]	� https://www.python.org/
[3]	 �https://www.pytennessee.org/
[4]	� https://twitter.com/PyTennessee
[5]	� https://2019.pycascades.com/
[6]	 �https://twitter.com/pycascades
[7]	� https://www.youtube.com/channel/

UCtWI06j1EADmEOGj2iJhSyA
[8]	� https://opensource.com/users/nhuntwalker
[9]	 �https://us.pycon.org
[10]	� https://twitter.com/pycon
[11]	� https://www.youtube.com/channel/UCsX05-

2sVSH7Nx3zuk3NYuQ
[12]	� https://www.pyohio.org
[13]	 �https://twitter.com/pyohio
[14]	 �https://www.youtube.com/channel/

UCYqdrfvhGxNW3vXebypqXoQ
[15]	 �https://djangocon.us
[16]	� https://twitter.com/djangocon
[17]	� https://www.youtube.com/channel/

UC0yY6a79pPY9J0ShIHRf6yw
[18]	� https://pygotham.org
[19]	 �https://twitter.com/PyGotham
[20]	� https://www.youtube.com/channel/

UCTse88P9vOnsMaovjNl1YBA
[21]	 �https://northbaypython.org/
[22]	� https://twitter.com/northbaypython
[23]	� https://www.youtube.com/channel/

UCLc1vUexbRTlRBJcUG9U6ug
[24]	� https://pydata.org/
[25]	� https://twitter.com/PyData
[26]	� https://www.youtube.com/channel/

UCOjD18EJYcsBog4IozkF_7w
[27]	� https://pydata.org/events/
[28]	 �https://opensource.com/article/18/12/top-2019-conferences

Author
Nicholas Hunt-Walker is a software developer at Starbucks’
department of Emerging Technology. His specialty is in using
Python for development, but he dabbles heavily in JavaS-
cript as well. Formerly a graduate student in astronomy at
the University of Washington, he studied the structure of our
galaxy by looking at the positions and properties of evolved
stars before using his skills as a scientist to dip into data
science. Driven by curiosity and the possibility of building
something cool and interesting, Hunt-Walker loves web/
software development because it offers a blank canvas, and
data analysis because it gives him the opportunity to be cu-
rious in a structured and systematic way while also learning
something new. Email him at nhuntwalker@gmail.com.

https://northbaypython.org/
https://twitter.com/northbaypython
https://www.youtube.com/channel/UCLc1vUexbRTlRBJcUG9U6ug
https://pydata.org/
https://twitter.com/PyData
https://www.youtube.com/channel/UCOjD18EJYcsBog4IozkF_7w
https://pydata.org/events/
https://opensource.com/article/18/12/top-2019-conferences
http://www.Opensource.com
mailto:open%40opensource.com?subject=
https://opensource.com/life/16/2/attending-technical-conferences-whats-big-deal
https://opensource.com/life/16/2/attending-technical-conferences-whats-big-deal
https://www.python.org/
https://www.pytennessee.org/
https://twitter.com/PyTennessee
https://2019.pycascades.com/
https://twitter.com/pycascades
https://www.youtube.com/channel/UCtWI06j1EADmEOGj2iJhSyA
https://www.youtube.com/channel/UCtWI06j1EADmEOGj2iJhSyA
https://opensource.com/users/nhuntwalker
https://us.pycon.org
https://twitter.com/pycon
https://www.youtube.com/channel/UCsX05-2sVSH7Nx3zuk3NYuQ
https://www.youtube.com/channel/UCsX05-2sVSH7Nx3zuk3NYuQ
https://www.pyohio.org
https://twitter.com/pyohio
https://www.youtube.com/channel/UCYqdrfvhGxNW3vXebypqXoQ
https://www.youtube.com/channel/UCYqdrfvhGxNW3vXebypqXoQ
https://djangocon.us
https://twitter.com/djangocon
https://www.youtube.com/channel/UC0yY6a79pPY9J0ShIHRf6yw
https://www.youtube.com/channel/UC0yY6a79pPY9J0ShIHRf6yw
https://pygotham.org
https://twitter.com/PyGotham
https://www.youtube.com/channel/UCTse88P9vOnsMaovjNl1YBA
https://www.youtube.com/channel/UCTse88P9vOnsMaovjNl1YBA
https://northbaypython.org/
https://twitter.com/northbaypython
https://www.youtube.com/channel/UCLc1vUexbRTlRBJcUG9U6ug
https://www.youtube.com/channel/UCLc1vUexbRTlRBJcUG9U6ug
https://pydata.org/
https://twitter.com/PyData
https://www.youtube.com/channel/UCOjD18EJYcsBog4IozkF_7w
https://www.youtube.com/channel/UCOjD18EJYcsBog4IozkF_7w
https://pydata.org/events/
https://opensource.com/article/18/12/top-2019-conferences
mailto:nhuntwalker%40gmail.com?subject=

.......... F u t u r e

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 85

Every year Opensource.com editors, writers, and
readers attend open source-relat-

ed conferences and events hosted around the world. As we
started planning our 2019 schedules, we rounded up a few
top picks for the year.

Which conferences do you plan to attend in 2019? If you
don’t see your conference on this list, be sure to add it to our
community conference calendar [1]. (And for more events to
attend, check out The Enterprisers Project [2] list of business
leadership conferences worth exploring in 2019 [3].)

Are you proposing a talk for a 2019 event? Maybe the topic
would also make a great article for Opensource.com. Send
your story idea to us at open@opensource.com. Check the
links at the bottom of this page for lots of examples from
2018 events.

linux.conf.au (LCA) [4]
Christchurch, New Zealand
January 21 – 25, 2019
The Linux of Things-themed event will explore the use of
free open source software and hardware for internet of
things devices, along with security concerns, privacy, and
legal aspects, environmental impacts, everyday communi-
cation, health, ethics, and more.

DevConf.cz [5]
Brno, Czechia
January 25 – 27, 2019
A free Red Hat-sponsored community conference for devel-
opers, admins, DevOps engineers, testers, documentation
writers and other contributors to open source technologies
such as Linux, middleware, virtualization, storage, cloud,

and mobile where FLOSS communities sync, share, and
hack on upstream projects together.

FOSDEM [6]
Brussels, Belgium
February 2 – 3, 2019
FOSDEM is a free event for software developers to meet,
share ideas, and collaborate.

PyCon Namibia 2019 [7]
Windhoek, Namibia
February 19 – 22, 2019
Namibia’s international open source software conference re-
turns for its fifth edition.

PyCascades 2019 [8]
Seattle, WA, USA
February 23 – 25, 2019
PyCascades is a two-day Python conference held in the sce-
nic coastal city of Seattle, Washington (USA).

40 top Linux and open
source conferences in 2019

 by Rikki Endsley

We’ve rounded up a few favorite picks for conferences to attend in 2019.

https://opensource.com/resources/conferences-and-events-monthly
https://enterprisersproject.com
https://enterprisersproject.com/article/2018/11/business-leadership-conferences-worth-exploring-2019
http://www.Opensource.com
mailto:open%40opensource.com?subject=
https://linux.conf.au/
https://devconf.info/cz
https://fosdem.org/2019/
https://na.pycon.org/
https://2019.pycascades.com/

F u t u r e

86	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

.

SCALE 17x [9]
Pasadena, CA, USA
March 7 – 10, 2019
SCaLE is the largest community-run open-source and free
software conference in North America. It is held annually in
the greater Los Angeles area.

Open Source Leadership Summit [10]
Half Moon Bay, CA, USA
March 12 – 14, 2019
The Linux Foundation’s Open Source Leadership Summit is
where industry leaders convene to drive digital transforma-
tion with open source technologies and learn how to collab-
oratively manage the largest shared technology investment
of our time.

Chemnitzer Linux-Tage [11]
Chemnitz, Germany
March 16 – 17, 2019
Annual Linux and free (libre) software event

NetDev [12]
Prague, Czech Republic
March 20 – 22, 2019
Netdev 0x13 is a conference of the netdev community, by the
netdev community, for the netdev community. The focus is
on Linux kernel networking and user space utilization of the
interfaces to the Linux kernel networking subsystem.

PyCon SK 2019 [13]
Bratislava, Slovakia
March 22 – 25, 2019
The PyCon SK 2019 conference, which will take place in
Bratislava, is the annual gathering for the community using
and developing the open source Python programming lan-
guage. It is organized by the volunteers from the SPy o.z.,
civic association dedicated to advancing and promoting Py-
thon and other open source technologies and ideas.

LibrePlanet [14]
Boston, MA, USA
March 23 – 24, 2019
LibrePlanet is an annual conference hosted by the Free Soft-
ware Foundation for free software enthusiasts and anyone
who cares about the intersection of technology and social
justice.

Open edX [15]
San Diego, CA, USA
March 26 – 29, 2019
The Open edX Conference is produced in collaboration with
the Open edX community to discuss topics such as the Open
edX learning platform, new research in online learning best
practices, and new approaches to collaborative learning.

FLISoL [16]
Locations across Latin America
April 27, 2019
Annual Latin American free software installation festival

OpenStack Summit [17]
Denver, CO, USA
April 29 – May 5, 2019
In addition to OpenStack-related sessions, the event fea-
tures Kata Containers, Ansible, Ceph, Kubernetes, ONAP,
and more projects. Featured topics include CI/CD, container
infrastructure, edge computing, HPC/GPU/AI, open source
community, private and hybrid cloud, public cloud, telecom
and NFV.

PyCon USA [18]
Cleveland, OH, USA
May 1 – 9, 2019
The PyCon 2019 conference, which will take place in Cleve-
land, is the largest annual gathering for the community using
and developing the open-source Python programming lan-
guage. It is produced and underwritten by the Python Soft-
ware Foundation, the 501(c)(3) nonprofit organization dedi-
cated to advancing and promoting Python.

Red Hat Summit 2019 [19]
Boston, MA, USA
May 7 – 9, 2019
Red Hat Summit is an open source technology event to
showcase the latest and greatest in cloud computing, plat-
form, virtualization, middleware, storage, and systems man-
agement technologies.

Libre Graphics Meeting [20]
Saarbruecken, Germany
May 29 – June 2, 2019
The Libre Graphics Meeting (LGM) is an annual meeting on
free and open source software for graphics.

OSCON [21]
Portand, OR, USA
July 15 – 18, 2019
OSCON focuses on leading-edge software develop-
ment incorporating AI, cloud technology, and distributed
computing.

Open Source Summit Japan [22]
Tokyo, Japan
July 17 – 19, 2019
Open Source Summit Japan is a conference for technolo-
gists and open source industry leaders to collaborate and
share information, learn about the latest in open source tech-
nologies and find out how to gain a competitive advantage
by using innovative open solutions.

https://www.socallinuxexpo.org/scale/17x
https://events.linuxfoundation.org/events/open%20source-leadership-summit-2019/
https://chemnitzer.linux-tage.de/2019/en
https://netdevconf.org/0x13/
https://2019.pycon.sk/en/
https://libreplanet.org/2019/
https://con.openedx.org/
https://flisol.info/
https://www.openstack.org/summit/denver-2019/
https://us.pycon.org/2019/
https://www.redhat.com/en/summit/2019
https://libregraphicsmeeting.org/2019/
https://conferences.oreilly.com/oscon/oscon-or
https://events.linuxfoundation.org/events/open-source-summit-japan-2019/

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 87

GopherCon USA [23]
San Diego, CA, USA
July 24 – 27, 2019
North American event dedicated to the Go programming
language

PyCon AU 2019 [24]
Sydney, Australia
August 2 – 7, 2019
PyCon Australia (PyCon AU) is the national conference for
the Python Programming Community, bringing together pro-
fessional, student, and enthusiast developers with a love for
developing with Python.

Open Source Summit North America [25]
San Diego, CA, USA
August 21 – 23, 2019
Open Source Summit is a conference for developers,
architects and other technologists—as well as open
source community and industry leaders—to collaborate,
share information, learn about the latest technologies,
and gain a competitive advantage by using innovative
open solutions.

All Things Open [26]
Raleigh, NC, USA
October 13 – 15, 2019
A conference exploring open source, open tech and open
web in the enterprise

LISA19 [27]
Portland, OR, USA
October 28 – 30, 2019
LISA is the premier conference for operations professionals,
where sysadmins, systems engineers, IT operations profes-
sionals, SRE practitioners, developers, IT managers, and
academic researchers share real-world knowledge about
designing, building, securing, and maintaining the critical
systems of our interconnected world.

KubeCon+CloudNativeCon [28]
San Diego, CA, USA
November 18 – 21, 2019
The Cloud Native Computing Foundation’s flagship confer-
ence gathers adopters and technologists from leading open
source and cloud native communities.

Devopsdays [29]
Location: Around the world
Dates: Year-round
Devopsdays is a worldwide series of technical conferences
covering topics of software development, IT infrastructure
operations, and the intersection between them. Each event
is run by volunteers from the local area.

Embedded Recipes [30]
Paris, France
Dates: TBD
The open source embedded conference

EuroPython [31]
Location: TBD
Dates: TBD
The European Python Conference

FISL 19 [32]
Porto Alegre, Brazil
Dates: TBD
International free software conference

GopherCon BR [33]
Florian—polis, Brazil
Dates: TBD
Latin American event dedicated to the Go programming language

Kernel Recipes [34]
Paris, France
Dates: TBD
Informal conference about the Linux kernel

LatinoWare 16 [35]
Foz do Iguaçu, Brazil
Dates: TBD
Latin American FOSS conference

LVEE [36]
Grodno, Belarus
Dates: TBD
International conference of developers and users of free /
open source software

Ohio Linux Fest [37]
Columbus, OH, USA
Dates: TBD
The Ohio LinuxFest is a grassroots conference for the GNU/Li-
nux/Open Source Software/Free Software community that start-
ed in 2003 as a large inter-LUG (Linux User Group) meeting and
has grown steadily since. It is a place for the community to gather
and share information about Linux and Open Source Software.

Open Hardware Summit [38]
Location: TBD
Dates: TBD
The Open Hardware Summit is the annual conference orga-
nized by the Open Source Hardware Association a 501(c)(3)
not for profit charity. It is the world’s first comprehensive con-
ference on open hardware; a venue and community in which
we discuss and draw attention to the rapidly growing Open
Source Hardware movement.

https://www.gophercon.com/
https://2019.pycon-au.org/
https://events.linuxfoundation.org/events/open-source-summit-2019/
https://allthingsopen.org/
https://www.usenix.org/conference/lisa19
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://www.devopsdays.org/
https://embedded-recipes.org/2018/
https://ep2018.europython.eu/en/
http://fisl18.softwarelivre.org/index.php/en/
https://2018.gopherconbr.org/
https://kernel-recipes.org/en/2018/
https://latinoware.org/
https://lvee.org/en/main
https://ohiolinux.org/
https://www.oshwa.org/

F u t u r e

88	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

.

ORConf [39]
City TBD, Europe
Dates: TBD
ORConf is an annual conference for open source digital, semi-
conductor and embedded systems designers and users.

OWASP AppSec EU [40]
City TBD, Europe
Dates: TBD
An application security conference for European developers
and security experts

SeaGL [41]
Seattle, WA, USA
Dates: TBD
SeaGL is a grassroots technical conference dedicated to
spreading awareness and knowledge about the GNU/Linux
community and free/libre/open-source software/hardware.

SouthEast LinuxFest [42]
Charlotte, NC, USA
Dates: TBD
The SouthEast LinuxFest is a community event for anyone
who wants to learn more about Linux and open source Soft-
ware. It is part educational conference and part social gath-
ering. Like Linux itself, it is shared with attendees of all skill
levels to communicate tips and ideas, and to benefit all who
use Linux and open source Software.

OWASP AppSec USA [43]
City TBD, USA
Dates: TBD
An application security conference for developers and secu-
rity experts

2018 conference-inspired articles include:

All Things Open [44]
LISA18 [45]
OpenStack Summit [46]
OSCON [47]
Red Hat Summit [48]

Links
[1]	� https://opensource.com/resources/conferences-and-

events-monthly
[2]	 �https://enterprisersproject.com
[3]	 �https://enterprisersproject.com/article/2018/11/business-

leadership-conferences-worth-exploring-2019
[4]	� https://linux.conf.au/
[5]	� https://devconf.info/cz
[6]	� https://fosdem.org/2019/
[7]	 �https://na.pycon.org/
[8]	� https://2019.pycascades.com/

[9]	 �https://www.socallinuxexpo.org/scale/17x
[10]	� https://events.linuxfoundation.org/events/open%20source-

leadership-summit-2019/
[11]	 �https://chemnitzer.linux-tage.de/2019/en
[12]	� https://netdevconf.org/0x13/
[13]	 �https://2019.pycon.sk/en/
[14]	� https://libreplanet.org/2019/
[15]	� https://con.openedx.org/
[16]	� https://flisol.info/
[17]	� https://www.openstack.org/summit/denver-2019/
[18]	� https://us.pycon.org/2019/
[19]	 �https://www.redhat.com/en/summit/2019
[20]	� https://libregraphicsmeeting.org/2019/
[21]	� https://conferences.oreilly.com/oscon/oscon-or
[22]	� https://events.linuxfoundation.org/events/open-source-

summit-japan-2019/
[23]	� https://www.gophercon.com/
[24]	� https://2019.pycon-au.org/
[25]	� https://events.linuxfoundation.org/events/open-source-

summit-2019/
[26]	� https://allthingsopen.org/
[27]	 �https://www.usenix.org/conference/lisa19
[28]	� https://events.linuxfoundation.org/events/kubecon-

cloudnativecon-north-america-2019/
[29]	 �https://www.devopsdays.org/
[30]	 �https://embedded-recipes.org/2018/
[31]	� https://ep2018.europython.eu/en/
[32]	� http://fisl18.softwarelivre.org/index.php/en/
[33]	� https://2018.gopherconbr.org/
[34]	� https://kernel-recipes.org/en/2018/
[35]	� https://latinoware.org/
[36]	� https://lvee.org/en/main
[37]	� https://ohiolinux.org/
[38]	� https://www.oshwa.org/
[39]	 �https://orconf.org/
[40]	 �https://2018.appsec.eu/
[41]	� https://seagl.org
[42]	� http://www.southeastlinuxfest.org/
[43]	 �https://2018.appsecusa.org/
[44]	 �https://opensource.com/tags/all-things-open
[45]	 �https://opensource.com/tags/lisa
[46]	 �https://opensource.com/tags/openstack-summit
[47]	� https://opensource.com/tags/oscon
[48]	 �https://opensource.com/tags/red-hat-summit

Author
Rikki Endsley is a community architect and editor for
Opensource.com. In the past, she worked as the commu-
nity evangelist on the Open Source and Standards (OSAS)
team at Red Hat; a freelance tech journalist; community man-
ager for the USENIX Association; associate publisher of Linux
Pro Magazine, ADMIN, and Ubuntu User; and as the man-
aging editor of Sys Admin magazine and UnixReview.com.
Follow her on Twitter at: @rikkiends.

https://orconf.org/
https://2018.appsec.eu/
https://seagl.org
http://www.southeastlinuxfest.org/
https://2018.appsecusa.org/
https://opensource.com/tags/all-things-open
https://opensource.com/tags/lisa
https://opensource.com/tags/openstack-summit
https://opensource.com/tags/oscon
https://opensource.com/tags/red-hat-summit
https://opensource.com/resources/conferences-and-events-monthly
https://opensource.com/resources/conferences-and-events-monthly
https://enterprisersproject.com
https://enterprisersproject.com/article/2018/11/business-leadership-conferences-worth-exploring-2019
https://enterprisersproject.com/article/2018/11/business-leadership-conferences-worth-exploring-2019
https://linux.conf.au/
https://devconf.info/cz
https://fosdem.org/2019/
https://na.pycon.org/
https://2019.pycascades.com/
https://www.socallinuxexpo.org/scale/17x
https://events.linuxfoundation.org/events/open%20source-leadership-summit-2019/
https://events.linuxfoundation.org/events/open%20source-leadership-summit-2019/
https://chemnitzer.linux-tage.de/2019/en
https://netdevconf.org/0x13/
https://2019.pycon.sk/en/
https://libreplanet.org/2019/
https://con.openedx.org/
https://flisol.info/
https://www.openstack.org/summit/denver-2019/
https://us.pycon.org/2019/
https://www.redhat.com/en/summit/2019
https://libregraphicsmeeting.org/2019/
https://conferences.oreilly.com/oscon/oscon-or
https://events.linuxfoundation.org/events/open-source-summit-japan-2019/
https://events.linuxfoundation.org/events/open-source-summit-japan-2019/
https://www.gophercon.com/
https://2019.pycon-au.org/
https://events.linuxfoundation.org/events/open-source-summit-2019/
https://events.linuxfoundation.org/events/open-source-summit-2019/
https://allthingsopen.org/
https://www.usenix.org/conference/lisa19
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://www.devopsdays.org/
https://embedded-recipes.org/2018/
https://ep2018.europython.eu/en/
http://fisl18.softwarelivre.org/index.php/en/
https://2018.gopherconbr.org/
https://kernel-recipes.org/en/2018/
https://latinoware.org/
https://lvee.org/en/main
https://ohiolinux.org/
https://www.oshwa.org/
https://orconf.org/
https://2018.appsec.eu/
https://seagl.org
http://www.southeastlinuxfest.org/
https://2018.appsecusa.org/
https://opensource.com/tags/all-things-open
https://opensource.com/tags/lisa
https://opensource.com/tags/openstack-summit
https://opensource.com/tags/oscon
https://opensource.com/tags/red-hat-summit
http://www.Opensource.com
https://twitter.com/rikkiends

.......... F u t u r e

Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com	 89

I’m generally not big on New Year’s res-
olutions. I have no problem

with self-improvement, of course, but I tend to anchor around
other parts of the calendar. Even so, there’s something about
taking down this year’s free calendar and replacing it with
next year’s that inspires some introspection.

In 2017, I resolved to not share articles on social media
until I’d read them. I’ve kept to that pretty well, and I’d like
to think it has made me a better citizen of the internet. For
2019, I’m thinking about resolutions to make me a better
open source software maintainer.

Here are some resolutions I’ll try to stick to on the projects
where I’m a maintainer or
co-maintainer.

1. Include a code of
conduct
Jono Bacon included “not en-
forcing the code of conduct” in
his article “7 mistakes you’re
probably making [1].” Of
course, to enforce a code of
conduct, you must first have
a code of conduct. I plan on
defaulting to the Contributor
Covenant [2], but you can use whatever you like. As with
licenses, it’s probably best to use one that’s already written
instead of writing your own. But the important thing is to find

something that defines how you want your community to be-
have, whatever that looks like. Once it’s written down and
enforced, people can decide for themselves if it looks like the
kind of community they want to be a part of.

2. Make the license clear and specific
You know what really stinks? Unclear licenses. “This soft-
ware is licensed under the GPL” with no further text doesn’t
tell me much. Which version of the GPL [3]? Do I get to
pick? For non-code portions of a project, “licensed under a
Creative Commons license” is even worse. I love the Cre-
ative Commons licenses [4], but there are several different

licenses with significantly
different rights and obliga-
tions. So, I will make it very
clear which variant and ver-
sion of a license applies to
my projects. I will include the
full text of the license in the
repo and a concise note in
the other files.

Sort of related to this is using
an OSI-approved license [5].
It’s tempting to come up with
a new license that says ex-

actly what you want it to say, but good luck if you ever
need to enforce it. Will it hold up? Will the people using
your project understand it?

5 �resolutions for
open source project
maintainers

 by Ben Cotton

No matter how you say it, good communication is essential to strong open source communities.

https://opensource.com/article/17/8/mistakes-open-source-avoid
https://www.contributor-covenant.org/
https://opensource.org/licenses/gpl-license
https://creativecommons.org/share-your-work/licensing-types-examples/
https://opensource.org/

F u t u r e

90	 Open Source Yearbook 2018 ... CC BY-SA 4.0 ... Opensource.com

.

3. Triage bug reports and questions quickly
Few things in technology scale as poorly as open source
maintainers. Even on small projects, it can be hard to find
the time to answer every question and fix every bug. But
that doesn’t mean I can’t at least acknowledge the person.
It doesn’t have to be a multi-paragraph reply. Even just
labeling the GitHub issue shows that I saw it. Maybe I’ll
get to it right away. Maybe I’ll get to it a year later. But it’s
important for the community to see that, yes, there is still
someone here.

4. Don’t push features or bug fixes without
accompanying documentation
For as much as my open source contributions over the
years have revolved around documentation, my projects
don’t reflect the importance I put on it. There aren’t many
commits I can push that don’t require some form of docu-
mentation. New features should obviously be documented
at (or before!) the time they’re committed. But even bug
fixes should get an entry in the release notes. If nothing
else, a push is a good opportunity to also make a commit to
improving the docs.

5. Make it clear when I’m abandoning a project
I’m really bad at saying “no” to things. I told the editors I’d
write one or two articles for Opensource.com [6] and here
I am almost 60 articles later. Oops. But at some point, the
things that once held my interests no longer do. Maybe the

project is unnecessary because its functionality got ab-
sorbed into a larger project. Maybe I’m just tired of it. But
it’s unfair to the community (and potentially dangerous, as
the recent event-stream malware injection [7] showed) to
leave a project in limbo. Maintainers have the right to walk
away whenever and for whatever reason, but it should be
clear that they have.

Links
[1]	� https://opensource.com/article/17/8/mistakes-open-

source-avoid
[2]	� https://www.contributor-covenant.org/
[3]	 �https://opensource.org/licenses/gpl-license
[4]	 �https://creativecommons.org/share-your-work/licensing-

types-examples/
[5]	 �https://opensource.org/
[6]	� http://Opensource.com
[7]	� https://arstechnica.com/information-technology/2018/11/

hacker-backdoors-widely-used-open-source-software-to-
steal-bitcoin/

Author
Ben Cotton is a meteorologist by training, but weather makes
a great hobby. Ben works as a the Fedora Program Manag-
er at Red Hat. He co-founded a local open source meetup
group, and is a member of the Open Source Initiative and a
supporter of Software Freedom Conservancy. Find him on
Twitter (@FunnelFiasco) or at FunnelFiasco.com.

http://www.Opensource.com
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://opensource.com/article/17/8/mistakes-open-source-avoid
https://opensource.com/article/17/8/mistakes-open-source-avoid
https://www.contributor-covenant.org/
https://opensource.org/licenses/gpl-license
https://creativecommons.org/share-your-work/licensing-types-examples/
https://creativecommons.org/share-your-work/licensing-types-examples/
https://opensource.org/
http://www.Opensource.com
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://twitter.com/funnelfiasco
http://www.funnelfiasco.com

	001-002_Digital_Only
	003-009_Front_Matter
	010-012_Work_Peterson_CoinedOS
	013-017_Work_Huger_30_Tales
	018-019_Work_Watkins_macOS
	020-023_Work_Fortuna_Flutter
	024-026_Work_Bronshteyn_PowerShell
	027-029_Work_Nanjekye_Kubernetes
	030-031_Work_Chapman_Blockchain
	032-033_Super_Both_Coupled_Commands
	034-036_Collab_Jesse_Newcomers
	037-038_Collab_Vancsa_Metrics
	039-041_Collab_Larry_6_Ways
	042-044_Collab_Cloer_Women
	045-046_Collab_Brasseur_6_Feedback
	047-048_Collab_Brasseur_4_Best
	049-050_Collab_Feifer_FOSS
	051-051_Collab_Baker_BDFL
	052-055_Learn_Nutall_Hello
	056-058_Learn_Haff_AI
	059-061_Learn_Oh_7_OS_Platforms
	062-067_Create_Kenlon_Video
	068-069_School_Neary_OS_History
	070-073_School_Anderson_Git_Tips
	074-075_School_Lacroix_GNOME
	076-078_School_Fontana_GPL
	079-080_School_Hausenblas_Unix
	081-081_School_Cotton_Slackware
	082-084_Future_Hunt-Walker_Python_Conf
	085-088_Future_Endsley_OS_Conf
	089_090_Future_Cotton_Resolutions
	091-091_Editorial_Calendar

